Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 609745, 8 pages
http://dx.doi.org/10.1155/2013/609745
Research Article

Oat Protects against Diabetic Nephropathy in Rats via Attenuating Advanced Glycation End Products and Nuclear Factor Kappa B

Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received 26 February 2013; Revised 5 September 2013; Accepted 5 September 2013

Academic Editor: Ravirajsinh Jadeja

Copyright © 2013 Abdulrahman L. Al-Malki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Cooper, “Is diabetic nephropathy disappearing from clinical practice?” Pediatric Diabetes, vol. 7, no. 5, pp. 237–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Neuhofer and D. Pittrow, “Role of endothelin and endothelin receptor antagonists in renal disease,” European Journal of Clinical Investigation, vol. 36, no. 3, pp. 78–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Morcos, A. Schlotterer, A. A. Sayed et al., “Rosiglitazone reduces angiotensin II and advanced glycation end product-dependent sustained nuclear factor-kappaB activation in cultured human proximal tubular epithelial cells,” Hormone and Metabolic Research, vol. 40, no. 11, pp. 752–759, 2008. View at Google Scholar · View at Scopus
  4. N. Ahmed, “Advanced glycation endproducts—role in pathology of diabetic complications,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 3–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Ramasamy, S. J. Vannucci, S. S. D. Yan, K. Herold, S. F. Yan, and A. M. Schmidt, “Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation,” Glycobiology, vol. 15, no. 7, pp. 16R–28R, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. S. Kanwar, J. Wada, L. Sun et al., “Diabetic nephropathy: mechanisms of renal disease progression,” Experimental Biology and Medicine, vol. 233, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Gross, M. J. De Azevedo, S. P. Silveiro, L. H. Canani, M. L. Caramori, and T. Zelmanovitz, “Diabetic nephropathy: diagnosis, prevention, and treatment,” Diabetes Care, vol. 28, no. 1, pp. 164–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. F. P. Schena and L. Gesualdo, “Pathogenetic mechanisms of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. S30–S33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Morcos, A. A. R. Sayed, A. Bierhaus et al., “Activation of tubular epithelial cells in diabetic nephropathy,” Diabetes, vol. 51, no. 12, pp. 3532–3544, 2002. View at Google Scholar · View at Scopus
  10. S. Reddy, J. Bichler, K. J. Wells-Knecht, S. R. Thorpe, and J. W. Baynes, “Nε-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins,” Biochemistry, vol. 34, no. 34, pp. 10872–10878, 1995. View at Google Scholar · View at Scopus
  11. J. Peyroux and M. Sternberg, “Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes,” Pathologie Biologie, vol. 54, no. 7, pp. 405–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. K. Bolton, D. C. Cattran, M. E. Williams et al., “Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy,” American Journal of Nephrology, vol. 24, no. 1, pp. 32–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. P. A. Voziyan and B. G. Hudson, “Pyridoxamine: the many virtues of a maillard reaction inhibitor,” Annals of the New York Academy of Sciences, vol. 1043, pp. 807–816, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Jafarnejad, S. Z. Bathaie, M. Nakhjavani, and M. Z. Hassan, “Investigation of the mechanisms involved in the high-dose and long-term acetyl salicylic acid therapy of type I diabetic rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 2, pp. 850–857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Miyata, Y. Ueda, K. Asahi et al., “Mechanism of the inhibitory effect of OPB-9195 [(6)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide] on advanced glycation end product and advanced lipoxidation end product formation,” Journal of the American Society of Nephrology, vol. 11, no. 9, pp. 1719–1725, 2000. View at Google Scholar · View at Scopus
  16. S. Rahbar, “Novel inhibitors of glycation and AGE formation,” Cell Biochemistry and Biophysics, vol. 48, no. 2-3, pp. 147–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Yang, J. E. Litchfield, and J. W. Baynes, “AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats,” Archives of Biochemistry and Biophysics, vol. 412, no. 1, pp. 42–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Peppa, H. Brem, W. Cai et al., “Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711),” American Journal of Nephrology, vol. 26, no. 5, pp. 430–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-Y. Goh, M. Jasik, and M. E. Cooper, “Agents in development for the treatment of diabetic nephropathy,” Expert Opinion on Emerging Drugs, vol. 13, no. 3, pp. 447–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Würsch and F. X. Pi-Sunyer, “The role of viscous soluble fiber in the metabolic control of diabetes: a review with special emphasis on cereals rich in β-glucan,” Diabetes Care, vol. 20, no. 11, pp. 1774–1780, 1997. View at Google Scholar · View at Scopus
  21. V. Vuksan, J. L. Sievenpiper, Z. Xu et al., “Konjac-mannan and American ginseng: emerging alternative therapies for type 2 diabetes mellitus,” Journal of the American College of Nutrition, vol. 20, pp. 370S–380S, 2001. View at Google Scholar · View at Scopus
  22. D. J. A. Jenkins, T. M. S. Wolever, and A. R. Leeds, “Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity,” British Medical Journal, vol. 1, no. 6124, pp. 1392–1394, 1978. View at Google Scholar · View at Scopus
  23. J. Hallfrisch and K. M. Behall, “Mechanisms of the effects of grains on insulin and glucose responses,” Journal of the American College of Nutrition, vol. 19, no. 3, pp. S320–S325, 2000. View at Google Scholar · View at Scopus
  24. P. J. Wood, J. T. Braaten, F. W. Scott, K. D. Riedel, M. S. Wolynetz, and M. W. Collins, “Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load,” British Journal of Nutrition, vol. 72, no. 5, pp. 731–743, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Tapola, H. Karvonen, L. Niskanen, M. Mikola, and E. Sarkkinen, “Glycemic responses of oat bran products in type 2 diabetic patients,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 15, no. 4, pp. 255–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Panahi, A. Ezatagha, F. Temelli, T. Vasanthan, and V. Vuksan, “β-glucan from two sources of oat concentrates affect postprandial glycemia in relation to the level of viscosity,” Journal of the American College of Nutrition, vol. 26, no. 6, pp. 639–644, 2007. View at Google Scholar · View at Scopus
  27. A. A. Sayed, “Thymoquinone and proanthocyanidin attenuation of diabetic nephropathy in rats,” Europian Reviews for Medical and Pharmacological Science, vol. 16, no. 6, pp. 808–815, 2012. View at Google Scholar
  28. A. L. Almalki, “Oat Attenuation of Hyperglycemia- Induced Retinal Oxidative Stress and NF-κB activation in Streptozotocin-Induced Diabetic Rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 983923, 8 pages, 2013. View at Publisher · View at Google Scholar
  29. A. A. R. Sayed, “Ferulsinaic acid attenuation of diabetic nephropathy,” European Journal of Clinical Investigation, vol. 43, no. 1, pp. 56–63, 2013. View at Google Scholar
  30. A. A. R. Sayed, M. Khalifa, and F. F. Abd el-Latif, “Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats—attenuation of diabetic nephropathy in rats,” Journal of Physiology and Biochemistry, vol. 68, no. 2, pp. 263–269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Troudi, I. Ben Amara, A. M. Samet, and N. Zeghal, “Oxidative stress induced by 2,4-phenoxyacetic acid in liver of female rats and their progeny: biochemical and histopathological studies,” Environmental Toxicology, vol. 27, no. 3, pp. 137–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Google Scholar · View at Scopus
  33. M. S. Moron, J. W. Depierre, and B. Mannervik, “Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver,” Biochimica et Biophysica Acta, vol. 582, no. 1, pp. 67–78, 1979. View at Google Scholar · View at Scopus
  34. A. A. R. Sayed, “Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 63, no. 3, pp. 423–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Mekheimer, A. A. Sayed, and E. A. Ahmed, “Novel 1,2,4-Triazolo [1, 5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans,” Journal of Medicinal Chemistry, vol. 55, no. 9, pp. 4169–4177, 2012. View at Google Scholar
  36. N. Garrido, A. Pérez-Martos, M. Faro et al., “Cisplatin-mediated impairment of mitochondrial DNA metabolism inversely correlates with glutathione levels,” Biochemical Journal, vol. 414, no. 1, pp. 93–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Matsubasa, T. Uchino, S. Karashima, M. Tanimura, and F. Endo, “Oxidative stress in very low birth weight infants as measured by urinary 8-OHdG,” Free Radical Research, vol. 36, no. 2, pp. 189–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Schlotterer, G. Kukudov, F. Bozorgmehr et al., “C. elegans as model for the study of high glucose-mediated life span reduction,” Diabetes, vol. 58, no. 11, pp. 2450–2456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. A. R. Sayed and M. Morcos, “Thymoquinone decreases AGE-induced NF-κB activation in proximal tubular epithelial cells,” Phytotherapy Research, vol. 21, no. 9, pp. 898–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. A. R. Sayed, “Proanthocyanidin protects against cisplatin-induced nephrotoxicity,” Phytotherapy Research, vol. 23, no. 12, pp. 1738–1741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. A. R. Saved, “Thymoquinone protects renal tubular cells against tubular injury,” Cell Biochemistry and Function, vol. 26, no. 3, pp. 374–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Fukuzawa, Y. Watanabe, D. Inaguma, and N. Hotta, “Evaluation of glomerular lesion and abnormal urinary findings in OLETF rats resulting from a long-term diabetic state,” Journal of Laboratory and Clinical Medicine, vol. 128, no. 6, pp. 568–578, 1996. View at Google Scholar · View at Scopus