Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 613950, 12 pages
http://dx.doi.org/10.1155/2013/613950
Research Article

Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

1Graduate Institute of Natural Healing Sciences, Nanhua University, No. 55, Section 1, Nanhua Road, Zhongkeng, Dalin Township, Chiayi County 622, Taiwan
2Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
3Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan
4Department of Education and Research, Taichung Veterans General Hospital, No. 1650, Section 4, Taiwan Boulevard, Taichung 407, Taiwan
5Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan

Received 20 August 2012; Revised 21 December 2012; Accepted 25 December 2012

Academic Editor: Byung-Cheul Shin

Copyright © 2013 Chiu-Yuan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Bjoraker, J. H. Ryu, M. K. Edwin et al., “Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 199–203, 1998. View at Google Scholar · View at Scopus
  2. B. Hinz, “Formation and function of the myofibroblast during tissue repair,” Journal of Investigative Dermatology, vol. 127, no. 3, pp. 526–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Phillips, M. D. Burdick, K. Hong et al., “Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis,” Journal of Clinical Investigation, vol. 114, no. 3, pp. 438–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. C. Willis, J. M. Liebler, K. Luby-Phelps et al., “Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis,” American Journal of Pathology, vol. 166, no. 5, pp. 1321–1332, 2005. View at Google Scholar · View at Scopus
  5. F. Drakopanagiotakis, A. Xifteri, V. Polychronopoulos, and D. Bouros, “Apoptosis in lung injury and fibrosis,” European Respiratory Journal, vol. 32, no. 6, pp. 1631–1638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. L. Fattman, “Apoptosis in pulmonary fibrosis: too much or not enough?” Antioxidants and Redox Signaling, vol. 10, no. 2, pp. 379–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Abdelwahed, I. Bouhlel, I. Skandrani et al., “Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling,” Chemico-Biological Interactions, vol. 165, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. K. Sohi, N. Mittal, M. K. Hundal, and K. L. Khanduja, “Gallic acid, an antioxidant, exhibits antiapoptotic potential in normal human lymphocytes: a Bcl-2 independent mechanism,” Journal of Nutritional Science and Vitaminology, vol. 49, no. 4, pp. 221–227, 2003. View at Google Scholar · View at Scopus
  9. Y. J. Kim, “Antimelanogenic and antioxidant properties of gallic acid,” Biological and Pharmaceutical Bulletin, vol. 30, no. 6, pp. 1052–1055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Ozcelik, M. Kartal, and I. Orhan, “Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids,” Pharmaceutical Biology, vol. 49, no. 4, pp. 396–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Hsu and G. C. Yen, “Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats,” British Journal of Nutrition, vol. 98, no. 4, pp. 727–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Nakano, N. Shirasaka, H. Koyama et al., “C19 odd-chain polyunsaturated fatty acids (PUFAs) are metabolized to C21-PUFAs in a rat liver cell line, and curcumin, gallic acid, and their related compounds inhibit their desaturation,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 8, pp. 1641–1650, 2000. View at Google Scholar · View at Scopus
  13. Z. Liu, J. Schwimer, D. Liu et al., “Gallic acid is partially responsible for the antiangiogenic activities of Rubus leaf extract,” Phytotherapy Research, vol. 20, no. 9, pp. 806–813, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Yoshioka, T. Kataoka, T. Hayashi, M. Hasegawa, Y. Ishi, and H. Hibasami, “Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines,” Oncology Reports, vol. 7, no. 6, pp. 1221–1223, 2000. View at Google Scholar · View at Scopus
  15. C. L. Hsu, W. H. Lo, and G. C. Yen, “Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a fas- and mitochondrial-mediated pathway,” Journal of Agricultural and Food Chemistry, vol. 55, no. 18, pp. 7359–7365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Y. Chuang, H. C. Liu, L. C. Wu, C. Y. Chen, J. T. Chang, and S. L. Hsu, “Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway,” Journal of Agricultural and Food Chemistry, vol. 58, no. 5, pp. 2943–2951, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. E. Klaunig, L. M. Kamendulis, and B. A. Hocevar, “Oxidative stress and oxidative damage in carcinogenesis,” Toxicologic Pathology, vol. 38, no. 1, pp. 96–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yuan, X. Zhang, X. Huang et al., “NADPH oxidase 2-derived reactive oxygen species mediate FFAs-Induced dysfunction and apoptosis of b- Cells via JNK, p38 MAPK and p53 pathways,” PLoS ONE, vol. 5, no. 12, Article ID e15726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Ueda, H. Masutani, H. Nakamura, T. Tanaka, M. Ueno, and J. Yodoi, “Redox control of cell death,” Antioxidants and Redox Signaling, vol. 4, no. 3, pp. 405–414, 2002. View at Google Scholar · View at Scopus
  20. S. W. Gen, “The functional interactions between the p53 and MAPK signaling pathways,” Cancer Biology and Therapy, vol. 3, no. 2, pp. 156–161, 2004. View at Google Scholar · View at Scopus
  21. K. Kobayashi and I. Tsukamoto, “Prolonged Jun N-terminal kinase (JNK) activation and the upregulation of p53 and p21WAF1/CIP1 preceded apoptosis in hepatocytes after partial hepatectomy and cisplatin,” Biochimica et Biophysica Acta, vol. 1537, no. 1, pp. 79–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. H. L. Hadden and C. A. Henke, “Induction of lung fibroblast apoptosis by soluble fibronectin peptides,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4, pp. 1553–1560, 2000. View at Google Scholar · View at Scopus
  23. D. Zhang, C. Huang, C. Yang et al., “Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts,” Respiratory Research, vol. 12, p. 154, 2011. View at Publisher · View at Google Scholar
  24. R. Niemetz and G. G. Gross, “Enzymology of gallotannin and ellagitannin biosynthesis,” Phytochemistry, vol. 66, no. 17, pp. 2001–2011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kaur, B. Velmurugan, S. Rajamanickam, R. Agarwal, and C. Agarwal, “Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice,” Pharmaceutical Research, vol. 26, no. 9, pp. 2133–2140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Ohno, K. Fukuda, G. Takemura et al., “Induction of apoptosis by gallic acid in lung cancer cells,” Anti-Cancer Drugs, vol. 10, no. 9, pp. 845–851, 1999. View at Google Scholar · View at Scopus
  27. M. Kawada, Y. Ohno, Y. Ri et al., “Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice,” Anti-Cancer Drugs, vol. 12, no. 10, pp. 847–852, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Faried, D. Kurnia, L. S. Faried et al., “Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines,” International Journal of Oncology, vol. 30, no. 3, pp. 605–613, 2007. View at Google Scholar · View at Scopus
  29. N. Sakaguchi, M. Inoue, and Y. Ogihara, “Reactive oxygen species and intracellular Ca2+, common signals for apoptosis induced by gallic acid,” Biochemical Pharmacology, vol. 55, no. 12, pp. 1973–1981, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. H. M. Chen, Y. C. Wu, Y. C. Chia et al., “Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells,” Cancer Letters, vol. 286, no. 2, pp. 161–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Inoue, R. Suzuki, T. Koide, N. Sakaguchi, Y. Ogihara, and Y. Yabu, “Antioxidant, gallic acid, induces apoptosis in HL-60RG cells,” Biochemical and Biophysical Research Communications, vol. 204, no. 2, pp. 898–904, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Inoue, N. Sakaguchi, K. Isuzugawa, H. Tani, and Y. Ogihara, “Role of reactive oxygen species in gallic acid-induced apoptosis,” Biological and Pharmaceutical Bulletin, vol. 23, no. 10, pp. 1153–1157, 2000. View at Google Scholar · View at Scopus
  33. J. Blenis, “Signal transduction via the MAP kinases: proceed at your own RSK,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 5889–5892, 1993. View at Google Scholar · View at Scopus
  34. Y. Liu, G. L. Borchert, A. Surazynski, C. A. Hu, and J. M. Phang, “Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling,” Oncogene, vol. 25, no. 41, pp. 5640–5647, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Z. Guyton, Y. Liu, M. Gorospe, Q. Xu, and N. J. Holbrook, “Activation of mitogen-activated protein kinase by H2O2: role in cell survival following oxidant injury,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4138–4142, 1996. View at Google Scholar · View at Scopus
  36. X. Mao, C. Rong Yu, W. Hua Li, and W. Xin Li, “Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells,” Cell Research, vol. 18, no. 8, pp. 879–888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Hsin, C. F. Chen, S. Huang, T. S. Shih, P. S. Lai, and P. J. Chueh, “The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells,” Toxicology Letters, vol. 179, no. 3, pp. 130–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Gomez-Lazaro, M. F. Galindo, R. M. Melero-Fernandez De Mera et al., “Reactive oxygen species and p38 mitogen-activated protein kinase activate bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate,” Molecular Pharmacology, vol. 71, no. 3, pp. 736–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. S. Henson and S. B. Gibson, “Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy,” Cellular Signalling, vol. 18, no. 12, pp. 2089–2097, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Z. Guyton, Y. Liu, M. Gorospe, Q. Xu, and N. J. Holbrook, “Activation of mitogen-activated protein kinase by H2O2: role in cell survival following oxidant injury,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4138–4142, 1996. View at Google Scholar · View at Scopus
  41. A. Arcaro, M. Aubert, M. E. Espinosa del Hierro et al., “Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling,” Cellular Signalling, vol. 19, no. 5, pp. 1081–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Martindale and N. J. Holbrook, “Cellular response to oxidative stress: signaling for suicide and survival,” Journal of Cellular Physiology, vol. 192, no. 1, pp. 1–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Sonoda, S. Watanabe, Y. Matsumoto, E. Aizu-Yokota, and T. Kasahara, “FAK is the upstream signal protein of the phosphatidylinositol 3- kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line,” Journal of Biological Chemistry, vol. 274, no. 15, pp. 10566–10570, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Wang, K. D. McCullough, T. F. Franke, and N. J. Holbrook, “Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival,” Journal of Biological Chemistry, vol. 275, no. 19, pp. 14624–14631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Sakaguchi, K. Matsumoto, and N. Hisamoto, “Roles of MAP kinase cascades in Caenorhabditis elegans,” Journal of Biochemistry, vol. 136, no. 1, pp. 7–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. K. Kang, N. J. Kang, Y. J. Jang, K. W. Lee, and H. J. Lee, “Gallic acid induces neuronal cell death through activation of c-Jun N-terminal kinase and downregulation of Bcl-2,” Annals of the New York Academy of Sciences, vol. 1171, pp. 514–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. H. Han, H. J. Moon, B. R. You, S. Z. Kim, S. H. Kim, and W. H. Park, “JNK and p38 inhibitors increase and decrease apoptosis, respectively, in pyrogallol-treated calf pulmonary arterial endothelial cells,” International Journal of Molecular Medicine, vol. 24, no. 5, pp. 717–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. W. H. Park, “MAPK inhibitors differentially affect gallic acid-induced human pulmonary fibroblast cell growth inhibition,” Molecular Medicine Reports, vol. 4, no. 1, pp. 193–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Topisirovic, G. J. Gutierrez, M. Chen, E. Appella, K. L. B. Borden, and Z. A. Ronai, “Control of p53 multimerization by Ubc13 is JNK-regulated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12676–12681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. Kim, J. Y. Kwon, N. J. Kang, K. W. Lee, and H. J. Lee, “Phloretin induces apoptosis in H-Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling,” Annals of the New York Academy of Sciences, vol. 1171, pp. 479–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. B. Lee, K. R. Kim, T. L. Huh, and Y. M. Lee, “Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways,” International Journal of Oncology, vol. 33, no. 6, pp. 1247–1256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Fan, M. Qi, Y. Yu et al., “P53 activation plays a crucial role in silibinin induced ROS generation via PUMA and JNK,” Free Radical Research, vol. 46, no. 3, pp. 310–319, 2012. View at Publisher · View at Google Scholar
  53. W. J. Duan, Q. S. Li, M. Y. Xia, S. I. Tashiro, S. Onodera, and T. Ikejima, “Silibinin activated p53 and induced autophagic death in human fibrosarcoma HT1080 cells via reactive oxygen species-p38 and c-Jun N-terminal kinase pathways,” Biological and Pharmaceutical Bulletin, vol. 34, no. 1, pp. 47–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. J. I. Bin-Chuan, W. H. Hsu, J. S. Yang et al., “Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo,” Journal of Agricultural and Food Chemistry, vol. 57, no. 16, pp. 7596–7604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Z. Liang, X. Zhang, H. Li et al., “Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of Mitogen-activated protein kinase pathways,” Cancer Biotherapy Radiopharmaceuticals, vol. 27, no. 10, pp. 701–710, 2012. View at Publisher · View at Google Scholar
  56. C. H. Yoon, S. J. Chung, S. W. Lee et al., “Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes,” Joint Bone Spine, 2012. View at Publisher · View at Google Scholar