Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 630415, 13 pages
http://dx.doi.org/10.1155/2013/630415
Research Article

Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

1Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
2Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
3Department of Dermatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
4Department of Medicine, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
5Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
6Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
7School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
8Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
9Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan

Received 9 November 2012; Accepted 5 February 2013

Academic Editor: Shu-Ming Wang

Copyright © 2013 Shu-Yi Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dlugosz, G. Merlino, and S. H. Yuspa, “Progress in cutaneous cancer research,” Journal of Investigative Dermatology Symposium Proceedings, vol. 7, no. 1, pp. 17–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Donaldson and B. M. Coldiron, “No end in sight: the skin cancer epidemic continues,” Seminars in Cutaneous Medicine and Surgery, vol. 30, no. 1, pp. 3–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Konstantopoulou, M. G. Lord, and A. W. Macfarlane, “Treatment of invasive squamous cell carcinoma with 5-percent imiquimod cream,” Dermatology Online Journal, vol. 12, no. 3, p. 10, 2006. View at Google Scholar · View at Scopus
  4. K. G. Lewis and M. A. Weinstock, “Nonmelanoma skin cancer mortality (1988–2000): the Rhode Island follow-back study,” Archives of Dermatology, vol. 140, no. 7, pp. 837–842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Alam and D. Ratner, “Cutaneous squamous-cell carcinoma,” The New England Journal of Medicine, vol. 344, no. 13, pp. 975–983, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Tull, K. Nunley, and R. Sengelmann, “Nonsurgical treatment modalities for primary cutaneous malignancies,” Dermatologic Surgery, vol. 34, no. 7, pp. 859–872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Y. Chen, C. H. Chen, C. H. Wong et al., “Cytotoxic constituents of the stems of Cinnamomum subavenium,” Journal of Natural Products, vol. 70, no. 1, pp. 103–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Liu, C. Y. Chen, A. M. Huang, and J. H. Li, “Subamolide A, a component isolated from Cinnamomum subavenium, induces apoptosis mediated by mitochondria-dependent, p53 and ERK1/2 pathways in human urothelial carcinoma cell line NTUB1,” Journal of Ethnopharmacology, vol. 137, pp. 503–511, 2011. View at Google Scholar
  9. H. M. Wang, C. Y. Chen, and Z. H. Wen, “Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase,” Experimental Dermatology, vol. 20, no. 3, pp. 242–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Y. Kuo, T. J. Hsieh, Y. D. Wang, W. L. Lo, Y. R. Hsui, and C. Y. Chen, “Cytotoxic constituents from the leaves of Cinnamomum subavenium,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 1, pp. 97–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Wang, C. C. Chiu, P. F. Wu, and C. Y. Chen, “Subamolide e from Cinnamomum subavenium induces sub-G1 cell-cycle arrest and caspase-dependent apoptosis and reduces the migration ability of human melanoma cells,” Journal of Agricultural and Food Chemistry, vol. 59, no. 15, pp. 8187–8192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. W. Johnstone, A. A. Ruefli, and S. W. Lowe, “Apoptosis: a link between cancer genetics and chemotherapy,” Cell, vol. 108, no. 2, pp. 153–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Pommier, O. Sordet, S. Antony, R. L. Hayward, and K. W. Kohn, “Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks,” Oncogene, vol. 23, no. 16, pp. 2934–2949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Günther, H. Neumann, M. F. Neurath, and C. Becker, “Apoptosis, necrosis, and necroptosis: cell death regulation in the intestinal epithelium,” Gut, 2012. View at Publisher · View at Google Scholar
  15. J. M. Hardwick and R. J. Youle, “SnapShot: BCL-2 proteins,” Cell, vol. 138, no. 2, pp. 404.e1–404.e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Cory and J. M. Adams, “Killing cancer cells by flipping the Bcl-2/Bax switch,” Cancer Cell, vol. 8, no. 1, pp. 5–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kurokawa and S. Kornbluth, “Caspases and kinases in a death grip,” Cell, vol. 138, no. 5, pp. 838–854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. V. Rao, H. M. Ellerby, and D. E. Bredesen, “Coupling endoplasmic reticulum stress to the cell death program,” Cell Death and Differentiation, vol. 11, no. 4, pp. 372–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. C. Shore, F. R. Papa, and S. A. Oakes, “Signaling cell death from the endoplasmic reticulum stress response,” Current Opinion in Cell Biology, vol. 23, no. 2, pp. 143–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Tabas and D. Ron, “Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress,” Nature Cell Biology, vol. 13, no. 3, pp. 184–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. D. McCullough, J. L. Martindale, L. O. Klotz, T. Y. Aw, and N. J. Holbrook, “Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state,” Molecular and Cellular Biology, vol. 21, no. 4, pp. 1249–1259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Puthalakath, L. A. O'Reilly, P. Gunn et al., “ER stress triggers apoptosis by activating BH3-only protein Bim,” Cell, vol. 129, no. 7, pp. 1337–1349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. J. Chen, C. Y. Wu, C. C. Chang, C. J. Ma, M. C. Li, and C. M. Chen, “Nuclear Krüppel-like factor 4 expression is associated with human skin squamous cell carcinoma progression and metastasis,” Cancer Biology & Therapy, vol. 7, no. 5, pp. 777–782, 2008. View at Google Scholar
  25. S. W. Huang, C. C. Chang, C. C. Lin et al., “Mcl-1 determines the imiquimod-induced apoptosis but not imiquimod-induced autophagy in skin cancer cells,” Journal of Dermatological Science, vol. 65, pp. 170–178, 2012. View at Google Scholar
  26. T. F. Ho, Y. T. Peng, S. M. Chuang et al., “Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines,” Toxicology and Applied Pharmacology, vol. 235, no. 2, pp. 253–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. Yang, H. C. Chen, J. S. Tsai, and L. Y. Lin, “Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-κB activity,” Chemical Research in Toxicology, vol. 20, no. 3, pp. 406–415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. F. Ho, C. J. Ma, C. H. Lu et al., “Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53,” Toxicology and Applied Pharmacology, vol. 225, no. 3, pp. 318–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. J. Woo, T. J. Lee, S. H. Lee et al., “Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells,” Biochemical Pharmacology, vol. 73, no. 1, pp. 68–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Y. Pan, Y. C. Shen, C. H. Lu et al., “Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines,” Toxicology and Applied Pharmacology, vol. 265, no. 3, pp. 325–334, 2012. View at Publisher · View at Google Scholar
  31. H. Y. Hsieh, J. J. Shieh, C. J. Chen et al., “Prodigiosin down-regulates SKP2 to induce p27KIP1 stabilization and antiproliferation in human lung adenocarcinoma cells,” British Journal of Pharmacology, vol. 166, pp. 2095–2108, 2012. View at Google Scholar
  32. J. Hitomi, T. Katayama, Y. Eguchi et al., “Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death,” Journal of Cell Biology, vol. 165, no. 3, pp. 347–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. M. Cragg, D. J. Newman, and K. M. Snader, “Natural products in drug discovery and development,” Journal of Natural Products, vol. 60, no. 1, pp. 52–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Newman, G. M. Cragg, and K. M. Snader, “Natural products as sources of new drugs over the period 1981-2002,” Journal of Natural Products, vol. 66, no. 7, pp. 1022–1037, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. H. Lee, “Current developments in the discovery and design of new drug candidates from plant natural product leads,” Journal of Natural Products, vol. 67, no. 2, pp. 273–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Fulda and K. M. Debatin, “Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy,” Oncogene, vol. 25, no. 34, pp. 4798–4811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Verfaillie, A. D. Garg, and P. Agostinis, “Targeting ER stress induced apoptosis and inflammation in cancer,” Cancer Letters, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Kim, W. Xu, and J. C. Reed, “Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities,” Nature Reviews Drug Discovery, vol. 7, no. 12, pp. 1013–1030, 2008. View at Publisher · View at Google Scholar · View at Scopus