Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 636053, 16 pages
http://dx.doi.org/10.1155/2013/636053
Review Article

Curcumin and Diabetes: A Systematic Review

1Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
2Fraser Lab for Diabetes Research, McGill University Health Center, Montreal, Canada H3A 1A1

Received 4 June 2013; Revised 30 August 2013; Accepted 12 September 2013

Academic Editor: Marco Leonti

Copyright © 2013 Dong-wei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Shapiro and W. C. Gong, “Natural products used for diabetes,” Journal of the American Pharmaceutical Association, vol. 42, no. 2, pp. 217–226, 2002. View at Google Scholar · View at Scopus
  2. C. P. Gobert and A. M. Duncan, “Consumption, perceptions and knowledge of soy among adults with type 2 diabetes,” Journal of the American College of Nutrition, vol. 28, no. 2, pp. 203–218, 2009. View at Google Scholar · View at Scopus
  3. C. S. Jiang, L. F. Liang, and Y. W. Guo, “Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades,” Acta Pharmacologica Sinica, vol. 33, no. 10, pp. 1217–1245, 2012. View at Google Scholar
  4. C. J. Nolan, P. Damm, and M. Prentki, “Type 2 diabetes across generations: from pathophysiology to prevention and management,” The Lancet, vol. 378, no. 9786, pp. 169–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. B. Aggarwal, C. Sundaram, N. Malani, and H. Ichikawa, “Curcumin: the Indian solid gold,” Advances in Experimental Medicine and Biology, vol. 595, pp. 1–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. M. Kolev, E. A. Velcheva, B. A. Stamboliyska, and M. Spiteller, “DFT and experimental studies of the structure and vibrational spectra of curcumin,” International Journal of Quantum Chemistry, vol. 102, no. 6, pp. 1069–1079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Perez-Torres, A. Ruiz-Ramirez, G. Banos, and M. El-Hafidi, “Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome,” Cardiovascular & Hematological Agents in Medicinal Chemistry, vol. 11, no. 1, pp. 25–37, 2013. View at Google Scholar
  8. A. Goel, A. B. Kunnumakkara, and B. B. Aggarwal, “Curcumin as “Curecumin”: from kitchen to clinic,” Biochemical Pharmacology, vol. 75, no. 4, pp. 787–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Shehzad, T. Ha, F. Subhan, and Y. S. Lee, “New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases,” European Journal of Nutrition, vol. 50, no. 3, pp. 151–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Chuengsamarn, S. Rattanamongkolgul, R. Luechapudiporn, C. Phisalaphong, and S. Jirawatnotai, “Curcumin extract for prevention of type 2 diabetes,” Diabetes Care, vol. 35, no. 11, pp. 2121–2127, 2012. View at Google Scholar
  11. B. B. Aggarwal, A. Kumar, and A. C. Bharti, “Anticancer potential of curcumin: preclinical and clinical studies,” Anticancer Research, vol. 23, no. 1 A, pp. 363–398, 2003. View at Google Scholar · View at Scopus
  12. M. Srinivasan, “Effect of curcumin on blood sugar as seen in a diabetic subject,” Indian Journal of Medical Sciences, vol. 26, no. 4, pp. 269–270, 1972. View at Google Scholar · View at Scopus
  13. A. Sahebkar, “Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome?” BioFactors, vol. 39, no. 2, pp. 197–208, 2013. View at Google Scholar
  14. L. Pari and P. Murugan, “Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats,” Journal of Medicinal Food, vol. 10, no. 2, pp. 323–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Arun and N. Nalini, “Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats,” Plant Foods for Human Nutrition, vol. 57, no. 1, pp. 41–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Murugan and L. Pari, “Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats,” Basic and Clinical Pharmacology and Toxicology, vol. 101, no. 4, pp. 241–245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. T. Peeyush, G. Gireesh, M. Jobin, and C. S. Paulose, “Neuroprotective role of curcumin in the cerebellum of streptozotocin-induced diabetic rats,” Life Sciences, vol. 85, no. 19-20, pp. 704–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Xavier, J. Sadanandan, N. George, and C. S. Paulose, “β2-adrenoceptor and insulin receptor expression in the skeletal muscle of streptozotocin induced diabetic rats: antagonism by vitamin D3 and curcumin,” European Journal of Pharmacology, vol. 687, no. 1–3, pp. 14–20, 2012. View at Publisher · View at Google Scholar
  19. L.-X. Na, Y.-L. Zhang, Y. Li et al., “Curcumin improves insulin resistance in skeletal muscle of rats,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 7, pp. 526–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Patumraj, N. Wongeakin, P. Sridulyakul, A. Jariyapongskul, N. Futrakul, and S. Bunnag, “Combined effects of curcumin and vitamin C to protect endothelial dysfunction in the iris tissue of STZ-induced diabetic rats,” Clinical Hemorheology and Microcirculation, vol. 35, no. 4, pp. 481–489, 2006. View at Google Scholar · View at Scopus
  21. V. Soetikno, F. R. Sari, P. T. Veeraveedu et al., “Curcumin ameliorates macrophage infiltration by inhibiting NF-B activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy,” Nutrition & Metabolism, vol. 8, article 35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. K. Jain, J. Rains, J. Croad, B. Larson, and K. Jones, “Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats,” Antioxidants and Redox Signaling, vol. 11, no. 2, pp. 241–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Soetikno, K. Watanabe, F. R. Sari et al., “Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats,” Molecular Nutrition and Food Research, vol. 55, no. 11, pp. 1655–1665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. E. M. Ali Hussain, “Hypoglycemic, hypolipidemic and antioxidant properties of combination of Curcumin from Curcuma longa, Linn, and partially purified product from Abroma augusta, Linn. in streptozotocin induced diabetes,” Indian Journal of Clinical Biochemistry, vol. 17, no. 2, pp. 33–43, 2002. View at Google Scholar · View at Scopus
  25. T. Mahesh, M. M. Sri Balasubashini, and V. P. Menon, “Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats: effect on lipid peroxidation,” Therapie, vol. 59, no. 6, pp. 639–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. El-Moselhy, A. Taye, S. S. Sharkawi, S. F. I. El-Sisi, and A. F. Ahmed, “The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids,” Food and Chemical Toxicology, vol. 49, no. 5, pp. 1129–1140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. B. Chougala, J. J. Bhaskar, M. G. R. Rajan, and P. V. Salimath, “Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats,” Clinical Nutrition, vol. 31, no. 5, pp. 749–755, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Nishiyama, T. Mae, H. Kishida et al., “Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) Suppress an increase in blood glucose level in type 2 diabetic KK-Aγ mice,” Journal of Agricultural and Food Chemistry, vol. 53, no. 4, pp. 959–963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. P. Weisberg, R. Leibel, and D. V. Tortoriello, “Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity,” Endocrinology, vol. 149, no. 7, pp. 3549–3558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K.-I. Seo, M.-S. Choi, U. J. Jung et al., “Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice,” Molecular Nutrition and Food Research, vol. 52, no. 9, pp. 995–1004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. I. Yousef, F. M. El-Demerdash, and F. M. E. Radwan, “Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin,” Food and Chemical Toxicology, vol. 46, no. 11, pp. 3506–3511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. F. El-Azab, F. M. Attia, and A. M. El-Mowafy, “Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines,” European Journal of Pharmacology, vol. 658, no. 1, pp. 41–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. J. He, G. Y. Wang, Y. Gao, W. H. Ling, Z. W. Yu, and T. R. Jin, “Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice,” World Journal of Diabetes, vol. 3, no. 5, pp. 94–104, 2012. View at Google Scholar
  34. P. Suryanarayana, A. Satyanarayana, N. Balakrishna, P. U. Kumar, and G. Bhanuprakash Reddy, “Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat,” Medical Science Monitor, vol. 13, no. 12, pp. BR286–BR292, 2007. View at Google Scholar · View at Scopus
  35. P. Murugan and L. Pari, “Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats,” Journal of Ethnopharmacology, vol. 113, no. 3, pp. 479–486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. V. O. Gutierres, C. M. Pinheiro, R. P. Assis, R. C. Vendramini, M. T. Pepato, and I. L. Brunetti, “Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes,” The British Journal of Nutrition, vol. 108, no. 3, pp. 440–448, 2012. View at Google Scholar
  37. S. Nishizono, T. Hayami, I. Ikeda, and K. Imaizumi, “Protection against the diabetogenic effect of feeding tert-butylhydroquinone to rats prior to the administration of streptozotocin,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 6, pp. 1153–1158, 2000. View at Google Scholar · View at Scopus
  38. J. B. Majithiya and R. Balaraman, “Time-dependent changes in antioxidant enzymes and vascular reactivity of aorta in streptozotocin-induced diabetic rats treated with curcumin,” Journal of Cardiovascular Pharmacology, vol. 46, no. 5, pp. 697–705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Prentki and S. R. M. Madiraju, “Glycerolipid metabolism and signaling in health and disease,” Endocrine Reviews, vol. 29, no. 6, pp. 647–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. P. S. Babu and K. Srinivasan, “Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat,” Molecular and Cellular Biochemistry, vol. 152, no. 1, pp. 13–21, 1995. View at Google Scholar · View at Scopus
  41. P. S. Babu and K. Srinivasan, “Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats,” Molecular and Cellular Biochemistry, vol. 166, no. 1-2, pp. 169–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Kuroda, Y. Mimaki, T. Nishiyama et al., “Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice,” Biological and Pharmaceutical Bulletin, vol. 28, no. 5, pp. 937–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Deng, D. H. Sieglaff, A. Zhang et al., “A peroxisome proliferator-activated receptor γ (PPARγ)/ PPARγ coactivator 1β autoregulatory loop in adipocyte mitochondrial function,” The Journal of Biological Chemistry, vol. 286, no. 35, pp. 30723–30731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. S. M. Schultze, B. A. Hemmings, M. Niessen, and O. Tschopp, “PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis,” Expert Reviews in Molecular Medicine, vol. 14, p. e1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Franckhauser, S. Muñoz, I. Elias, T. Ferre, and F. Bosch, “Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity,” Diabetes, vol. 55, no. 2, pp. 273–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Kim, J. Davis, A. J. Zhang, X. He, and S. T. Mathews, “Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells,” Biochemical and Biophysical Research Communications, vol. 388, no. 2, pp. 377–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Fujiwara, M. Hosokawa, X. Zhou et al., “Curcumin inhibits glucose production in isolated mice hepatocytes,” Diabetes Research and Clinical Practice, vol. 80, no. 2, pp. 185–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Tang and A. Chen, “Curcumin protects hepatic stellate cells against leptin-induced activation in vitro by accumulating intracellular lipids,” Endocrinology, vol. 151, no. 9, pp. 4168–4177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Lin and A. Chen, “Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2,” Molecular and Cellular Endocrinology, vol. 333, no. 2, pp. 160–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Lin, Y. Tang, Q. Kang, Y. Feng, and A. Chen, “Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARgamma activity and attenuating oxidative stress,” British Journal of Pharmacology, vol. 166, no. 8, pp. 2212–2227, 2012. View at Google Scholar
  51. Q. Kang and A. Chen, “Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1,” Laboratory Investigation, vol. 89, no. 11, pp. 1275–1290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Lin, S. Zheng, and A. Chen, “Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress,” Laboratory Investigation, vol. 89, no. 12, pp. 1397–1409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Gustafson and U. Smith, “Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes,” The Journal of Biological Chemistry, vol. 281, no. 14, pp. 9507–9516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. B. D. Hegarty, S. M. Furler, J. Ye, G. J. Cooney, and E. W. Kraegen, “The role of intramuscular lipid in insulin resistance,” Acta Physiologica Scandinavica, vol. 178, no. 4, pp. 373–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Y. Xie, P. R. Kong, J. F. Wu, Y. Li, and Y. X. Li, “Curcumin attenuates lipolysis stimulated by tumor necrosis factor-alpha or isoproterenol in 3T-L1 adipocytes,” Phytomedicine, vol. 20, no. 1, pp. 3–8, 2012. View at Google Scholar
  56. Y. Oner-Iyidogan, H. Kocak, M. Seyidhanoglu et al., “Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet,” Journal of Physiology and Biochemistry, 2013. View at Publisher · View at Google Scholar
  57. J. W. Haukeland, T. B. Dahl, A. Yndestad et al., “Fetuin A in nonalcoholic fatty liver disease: in vivo and in vitro studies,” European Journal of Endocrinology, vol. 166, no. 3, pp. 503–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Stefan, A. M. Hennige, H. Staiger et al., “α2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans,” Diabetes Care, vol. 29, no. 4, pp. 853–857, 2006. View at Google Scholar · View at Scopus
  59. I. Alwi, T. Santoso, S. Suyono et al., “The effect of curcumin on lipid level in patients with acute coronary syndrome,” Acta medica Indonesiana, vol. 40, no. 4, pp. 201–210, 2008. View at Google Scholar · View at Scopus
  60. A. Guilherme, J. V. Virbasius, V. Puri, and M. P. Czech, “Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes,” Nature Reviews Molecular Cell Biology, vol. 9, no. 5, pp. 367–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. H.-M. Woo, J.-H. Kang, T. Kawada, H. Yoo, M.-K. Sung, and R. Yu, “Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes,” Life Sciences, vol. 80, no. 10, pp. 926–931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Ohara, A. Uchida, R. Nagasaka, H. Ushio, and T. Ohshima, “The effects of hydroxycinnamic acid derivatives on adiponectin secretion,” Phytomedicine, vol. 16, no. 2-3, pp. 130–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. M. Gonzales and R. A. Orlando, “Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes,” Nutrition & Metabolism, vol. 5, no. 1, article 17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Ahn, H. Lee, S. Kim, and T. Ha, “Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/β-catenin signaling,” American Journal of Physiology, vol. 298, no. 6, pp. C1510–C1516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. T.-C. He, A. B. Sparks, C. Rago et al., “Identification of c-MYC as a target of the APC pathway,” Science, vol. 281, no. 5382, pp. 1509–1512, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. O. Tetsu and F. McCormick, “β-catenin regulates expression of cyclin D1 in colon carcinoma cells,” Nature, vol. 398, no. 6726, pp. 422–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Ninomiya-Tsuji, F. M. Torti, and G. M. Ringold, “Tumor necrosis factor-induced c-myc expression in the absence of mitogenesis is associated with inhibition of adipocyte differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 20, pp. 9611–9615, 1993. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Fu, M. Rao, T. Bouras et al., “Cyclin D1 inhibits peroxisome proliferator-activated receptor γ-mediated adipogenesis through histone deacetylase recruitment,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 16934–16941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. R. P. Joshi, G. Negi, A. Kumar et al., “SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 9, no. 6, pp. 776–785, 2013. View at Publisher · View at Google Scholar
  70. P. A. Kumar, P. Suryanarayana, P. Y. Reddy, and G. B. Reddy, “Modulation of α-crystallin chaperone activity in diabetic rat lens by curcumin,” Molecular Vision, vol. 11, pp. 561–568, 2005. View at Google Scholar · View at Scopus
  71. P. A. Kumar, A. Haseeb, P. Suryanarayana, N. Z. Ehtesham, and G. B. Reddy, “Elevated expression of αA- and αB-crystallins in streptozotocin-induced diabetic rat,” Archives of Biochemistry and Biophysics, vol. 444, no. 2, pp. 77–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Kase, S. Ishida, and N. A. Rao, “Increased expression of αA-crystallin in human diabetic eye,” International Journal of Molecular Medicine, vol. 28, no. 4, pp. 505–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. K. Losiewicz and P. E. Fort, “Diabetes impairs the neuroprotective properties of retinal alpha-crystallins,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 5034–5042, 2011. View at Google Scholar · View at Scopus
  74. P. Suryanarayana, M. Saraswat, T. Mrudula, T. P. Krishna, K. Krishnaswamy, and G. B. Reddy, “Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 2092–2099, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Premanand, M. Rema, M. Z. Sameer, M. Sujatha, and M. Balasubramanyam, “Effect of curcumin on proliferation of human retinal endothelial cells under in vitro conditions,” Investigative Ophthalmology and Visual Science, vol. 47, no. 5, pp. 2179–2184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Sameermahmood, M. Balasubramanyam, T. Saravanan, and M. Rema, “Curcumin modulates SDF-1α/CXCR4-induced migration of human retinal endothelial cells (HRECs),” Investigative Ophthalmology and Visual Science, vol. 49, no. 8, pp. 3305–3311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S. K. Gupta, B. Kumar, T. C. Nag et al., “Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms,” Journal of Ocular Pharmacology and Therapeutics, vol. 27, no. 2, pp. 123–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Mrudula, P. Suryanarayana, P. N. B. S. Srinivas, and G. B. Reddy, “Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina,” Biochemical and Biophysical Research Communications, vol. 361, no. 2, pp. 528–532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. R. A. Kowluru and M. Kanwar, “Effects of curcumin on retinal oxidative stress and inflammation in diabetes,” Nutrition & Metabolism, vol. 4, article 8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Wang, B. George, S. Chen, B. Feng, X. Li, and S. Chakrabarti, “Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats,” Diabetes/Metabolism Research and Reviews, vol. 28, no. 4, pp. 329–337, 2012. View at Google Scholar
  81. A. Kuhad and K. Chopra, “Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences,” European Journal of Pharmacology, vol. 576, no. 1–3, pp. 34–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Peeyush Kumar, S. Antony, S. Soman, K. P. Kuruvilla, N. George, and C. S. Paulose, “Role of curcumin in the prevention of cholinergic mediated cortical dysfunctions in streptozotocin-induced diabetic rats,” Molecular and Cellular Endocrinology, vol. 331, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. T. P. Kumar, S. Antony, G. Gireesh, N. George, and C. S. Paulose, “Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats,” Journal of Biomedical Science, vol. 17, p. 43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. P. T. Kumar, N. George, S. Antony, and C. Skaria Paulose, “Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats,” European Journal of Pharmacology, vol. 702, no. 1–3, pp. 323–331, 2013. View at Google Scholar
  85. S. Jayanarayanan, S. Smijin, K. T. Peeyush, T. R. Anju, and C. S. Paulose, “NMDA and AMPA receptor mediated excitotoxicity in cerebral cortex of streptozotocin induced diabetic rat: ameliorating effects of curcumin,” Chemico-Biological Interactions, vol. 201, no. 1–3, pp. 39–48, 2013. View at Google Scholar
  86. X. Wang, Y. Song, L. Chen et al., “Contribution of single-minded 2 to hyperglycaemia-induced neurotoxicity,” Neurotoxicology, vol. 35, pp. 106–112, 2013. View at Google Scholar
  87. Q.-L. Ma, F. Yang, E. R. Rosario et al., “β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin,” Journal of Neuroscience, vol. 29, no. 28, pp. 9078–9089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Sharma, S. K. Kulkarni, J. N. Agrewala, and K. Chopra, “Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain,” European Journal of Pharmacology, vol. 536, no. 3, pp. 256–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. H. N. Attia, N. M. Al-Rasheed, N. M. Al-Rasheed, Y. A. Maklad, A. A. E. Ahmed, and S. A. B. Kenawy, “Protective effects of combined therapy of gliclazide with curcumin in experimental diabetic neuropathy in rats,” Behavioural Pharmacology, vol. 23, no. 2, pp. 153–161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Li, Y. Zhang, D. B. Liu, H. Y. Liu, W. G. Hou, and Y. S. Dong, “Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model,” International Journal of Medical Sciences, vol. 10, no. 4, pp. 377–381, 2013. View at Publisher · View at Google Scholar
  91. S. Sharma, K. Chopra, and S. K. Kulkarni, “Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha,” Phytotherapy Research, vol. 21, no. 3, pp. 278–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Acar, E. Akil, H. Alp et al., “Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats,” The International Journal of Neuroscience, vol. 122, no. 7, pp. 367–372, 2012. View at Google Scholar
  93. C. Maric-Bilkan, “Obesity and diabetic kidney disease,” The Medical Clinics of North America, vol. 97, no. 1, pp. 59–74, 2013. View at Google Scholar
  94. A. T. Reutens, “Epidemiology of diabetic kidney disease,” The Medical Clinics of North America, vol. 97, no. 1, pp. 1–18, 2013. View at Google Scholar
  95. K. Tikoo, R. L. Meena, D. G. Kabra, and A. B. Gaikwad, “Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy,” British Journal of Pharmacology, vol. 153, no. 6, pp. 1225–1231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Sharma, S. K. Kulkarni, and K. Chopra, “Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 10, pp. 940–945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. P. S. Babu and K. Srinivasan, “Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats,” Molecular and Cellular Biochemistry, vol. 181, no. 1-2, pp. 87–96, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Chiu, Z. A. Khan, H. Farhangkhoee, and S. Chakrabarti, “Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB,” Nutrition, vol. 25, no. 9, pp. 964–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Ma, L. Phillips, Y. Wang et al., “Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC,” BMC Complementary and Alternative Medicine, vol. 10, article 67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. V. Soetikno, F. R. Sari, V. Sukumaran et al., “Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats,” The Journal of Nutritional Biochemistry, vol. 24, no. 5, pp. 796–802, 2013. View at Google Scholar
  101. T. Sawatpanich, H. Petpiboolthai, B. Punyarachun, and V. Anupunpisit, “Effect of curcumin on vascular endothelial growth factor expression in diabetic mice kidney induced by streptozotocin,” Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, vol. 93, pp. S1–S8, 2010. View at Google Scholar · View at Scopus
  102. P. Khajehdehi, M. Pakfetrat, K. Javidnia et al., “Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: a randomized, double-blind and placebo-controlled study,” Scandinavian Journal of Urology and Nephrology, vol. 45, no. 5, pp. 365–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. V. Soetikno, F. R. Sari, V. Sukumaran et al., “Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC-MAPK signaling pathway,” European Journal of Pharmaceutical Sciences, vol. 47, no. 3, pp. 604–614, 2012. View at Google Scholar
  104. B. Feng, S. Chen, J. Chiu, B. George, and S. Chakrabarti, “Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level,” American Journal of Physiology, vol. 294, no. 6, pp. E1119–E1126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. G. B. Sajithlal, P. Chithra, and G. Chandrakasan, “Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats,” Biochemical Pharmacology, vol. 56, no. 12, pp. 1607–1614, 1998. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Okamoto, S.-I. Yamagishi, Y. Inagaki et al., “Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin,” The FASEB Journal, vol. 16, no. 14, pp. 1928–1930, 2002. View at Google Scholar · View at Scopus
  107. H. Farhangkhoee, Z. A. Khan, S. Chen, and S. Chakrabarti, “Differential effects of curcumin on vasoactive factors in the diabetic rat heart,” Nutrition & Metabolism, vol. 3, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Srivastava and J. L. Mehta, “Currying the heart: curcumin and cardioprotection,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 14, no. 1, pp. 22–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Rungseesantivanon, N. Thenchaisri, P. Ruangvejvorachai, and S. Patumraj, “Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition,” BMC Complementary and Alternative Medicine, vol. 10, article 57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. G. S. Sidhu, H. Mani, J. P. Gaddipati et al., “Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice,” Wound Repair and Regeneration, vol. 7, no. 5, pp. 362–374, 1999. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Singh, V. Ranjan, D. Zaidi et al., “Insulin catalyzes the curcumin-induced wound healing: an in vitro model for gingival repair,” Indian Journal of Pharmacology, vol. 44, no. 4, pp. 458–462, 2012. View at Google Scholar
  112. J. G. Merrell, S. W. McLaughlin, L. Tie, C. T. Laurencin, A. F. Chen, and L. S. Nair, “Curcumin-loaded poly(ε-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 12, pp. 1149–1156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Elosta, T. Ghous, and N. Ahmed, “Natural products as Anti-glycation agents: possible therapeutic potential for diabetic complications,” Current Diabetes Reviews, vol. 8, no. 2, pp. 92–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Y. Hu, C. L. Liu, C. C. Chyau, and M. L. Hu, “Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells,” Journal of Agricultural and Food Chemistry, vol. 60, no. 33, pp. 8190–8196, 2012. View at Google Scholar
  115. K.-H. Choi, J.-W. Park, H.-Y. Kim et al., “Cellular factors involved in CXCL8 expression induced by glycated serum albumin in vascular smooth muscle cells,” Atherosclerosis, vol. 209, no. 1, pp. 58–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Rungseesantivanon, N. Thengchaisri, P. Ruangvejvorachai, and S. Patumraj, “Curcumin improves prostanoid ratio in diabetic mesenteric arteries associated with cyclooxygenase-2 and NF-κB suppression,” Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, vol. 3, pp. 421–429, 2010. View at Publisher · View at Google Scholar
  117. N. Hassan, H. M. El-Bassossy, and M. N. Zakaria, “Heme oxygenase-1 induction protects against hypertension associated with diabetes: effect on exaggerated vascular contractility,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 386, no. 3, pp. 217–226, 2013. View at Google Scholar
  118. J. F. Ndisang and A. Jadhav, “Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocin-induced diabetes,” American Journal of Physiology, vol. 296, no. 4, pp. E829–E841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. J. F. Ndisang and A. Jadhav, “The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension,” American Journal of Physiology, vol. 298, no. 1, pp. R211–R223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. W. Khimmaktong, H. Petpiboolthai, B. Panyarachun, and V. Anupunpisit, “Study of curcumin on microvasculature characteristic in diabetic rat's liver as revealed by vascular corrosion cast/scanning electron microscope (SEM) technique,” Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, vol. 95, supplement 5, pp. S133–S141, 2012. View at Google Scholar
  121. G. Appendino, G. Belcaro, U. Cornelli et al., “Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study,” Panminerva Medica, vol. 53, no. 3, pp. 43–49, 2011. View at Google Scholar · View at Scopus
  122. R. Steigerwalt, M. Nebbioso, G. Appendino et al., “Meriva, a lecithinized curcumin delivery system, in diabetic microangiopathy and retinopathy,” Panminerva Medica, vol. 54, no. 1, supplement 4, pp. 11–16, 2012. View at Google Scholar
  123. L. Li, T. Sawamura, and G. Renier, “Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation,” Circulation Research, vol. 94, no. 7, pp. 892–901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. S. K. Jain, J. Rains, and K. Jones, “Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels,” Free Radical Biology and Medicine, vol. 41, no. 1, pp. 92–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. P. Muthenna, P. Suryanarayana, S. K. Gunda, J. M. Petrash, and G. B. Reddy, “Inhibition of aldose reductase by dietary antioxidant curcumin: mechanism of inhibition, specificity and significance,” FEBS Letters, vol. 583, no. 22, pp. 3637–3642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. P. Pantazis, A. Varman, C. Simpson-Durand et al., “Curcumin and turmeric attenuate arsenic-induced angiogenesis in ovo,” Alternative Therapies in Health and Medicine, vol. 16, no. 2, pp. 12–14, 2010. View at Google Scholar · View at Scopus
  127. M. Hie, M. Yamazaki, and I. Tsukamoto, “Curcumin suppresses increased bone resorption by inhibiting osteoclastogenesis in rats with streptozotocin-induced diabetes,” European Journal of Pharmacology, vol. 621, no. 1–3, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. T.-C. Cheng, C.-S. Lin, C.-C. Hsu, L.-J. Chen, K.-C. Cheng, and J.-T. Cheng, “Activation of muscarinic M-1 cholinoceptors by curcumin to increase glucose uptake into skeletal muscle isolated from Wistar rats,” Neuroscience Letters, vol. 465, no. 3, pp. 238–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. Y.-T. Deng, T.-W. Chang, M.-S. Lee, and J.-K. Lin, “Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells,” Journal of Agricultural and Food Chemistry, vol. 60, no. 4, pp. 1059–1066, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. M. T. Abdel Aziz, T. Motawi, A. Rezq et al., “Effects of a water-soluble curcumin protein conjugate vs. pure curcumin in a diabetic model of erectile dysfunction,” Journal of Sexual Medicine, vol. 9, no. 7, pp. 1815–1833, 2012. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Kanter, C. Aktas, and M. Erboga, “Curcumin attenuates testicular damage, apoptotic germ cell death, and oxidative stress in streptozotocin-induced diabetic rats,” Molecular Nutrition & Food Research, vol. 57, no. 9, pp. 1578–1585, 2012. View at Publisher · View at Google Scholar
  132. Q. H. Jin, H. X. Shen, H. Wang, Q. Y. Shou, and Q. Liu, “Curcumin improves expression of SCF/c-kit through attenuating oxidative stress and NF-κB activation in gastric tissues of diabetic gastroparesis rats,” Diabetology & Metabolic Syndrome, vol. 5, no. 1, p. 12, 2013. View at Publisher · View at Google Scholar
  133. H. Iwasaki, M. Kajimura, S. Osawa et al., “A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus,” Journal of Gastroenterology, vol. 41, no. 11, pp. 1076–1087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Gururajan, T. Dasu, S. Shahidain et al., “Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth,” Journal of Immunology, vol. 178, no. 1, pp. 111–121, 2007. View at Google Scholar · View at Scopus
  136. K. Meghana, G. Sanjeev, and B. Ramesh, “Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role,” European Journal of Pharmacology, vol. 577, no. 1–3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Kanitkar, K. Gokhale, S. Galande, and R. R. Bhonde, “Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo,” British Journal of Pharmacology, vol. 155, no. 5, pp. 702–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Kanitkar and R. R. Bhonde, “Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation,” Life Sciences, vol. 82, no. 3-4, pp. 182–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Chanpoo, H. Petchpiboonthai, B. Panyarachun, and V. Anupunpisit, “Effect of curcumin in the amelioration of pancreatic islets in streptozotocin-induced diabetic mice,” Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, vol. 93, pp. S152–159, 2010. View at Google Scholar · View at Scopus
  140. K. S. Zafar, S. H. Inayat-Hussain, D. Siegel, A. Bao, B. Shieh, and D. Ross, “Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death,” Toxicology Letters, vol. 166, no. 3, pp. 261–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. A. N. Balamurugan, L. Akhov, G. Selvaraj, and S. Pugazhenthi, “Induction of antioxidant enzymes by curcumin and its analogues in human islets: implications in transplantation,” Pancreas, vol. 38, no. 4, pp. 454–460, 2009. View at Publisher · View at Google Scholar
  142. L. Best, A. C. Elliott, and P. D. Brown, “Curcumin induces electrical activity in rat pancreatic β-cells by activating the volume-regulated anion channel,” Biochemical Pharmacology, vol. 73, no. 11, pp. 1768–1775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. K. Khalooghi, S. Hashemi, N. Mehraban et al., “In vitro modulation of TCF7L2 gene expression in human pancreatic cells,” Molecular Biology Reports, vol. 36, no. 8, pp. 2329–2332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. Yan, R. Klein, G. Heiss et al., “The transcription factor 7-like 2 (TCF7L2) polymorphism may be associated with focal arteriolar narrowing in Caucasians with hypertension or without diabetes: the ARIC Study,” BMC Endocrine Disorders, vol. 10, article 9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. C. Ran, W. Zhao, R. D. Moir, and A. Moore, “Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species,” PLoS ONE, vol. 6, no. 4, Article ID e19362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Daval, S. Bedrood, T. Gurlo et al., “The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity,” Amyloid, vol. 17, no. 3-4, pp. 118–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Sparks, G. Liu, K. J. Robbins, and N. D. Lazo, “Curcumin modulates the self-assembly of the islet amyloid polypeptide by disassembling alpha-helix,” Biochemical and Biophysical Research Communications, vol. 422, no. 4, pp. 551–555, 2012. View at Google Scholar
  148. K. Cai, D. Qi, X. Hou et al., “MCP-1 upregulates amylin expression in murine pancreatic β cells through ERK/JNK-AP1 and NF-κB related signaling pathways independent of CCR2,” PLoS ONE, vol. 6, no. 5, Article ID e19559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. W. Xie and L. Du, “Diabetes is an inflammatory disease: evidence from traditional Chinese medicines,” Diabetes, Obesity and Metabolism, vol. 13, no. 4, pp. 289–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. G. C. Jagetia and B. B. Aggarwal, ““Spicing up” of the immune system by curcumin,” Journal of Clinical Immunology, vol. 27, no. 1, pp. 19–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. D. Margina, D. Gradinaru, G. Manda, I. Neagoe, and M. Ilie, “Membranar effects exerted in vitro by polyphenols—quercetin, epigallocatechin gallate and curcumin—on HUVEC and Jurkat cells, relevant for diabetes mellitus,” Food and Chemical Toxicology, 2013. View at Publisher · View at Google Scholar
  152. S. Sharma, K. Chopra, S. K. Kulkarni, and J. N. Agrewala, “Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway,” Clinical and Experimental Immunology, vol. 147, no. 1, pp. 155–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. J.-M. Yun, I. Jialal, and S. Devaraj, “Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin,” Journal of Nutritional Biochemistry, vol. 22, no. 5, pp. 450–458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. T. X. Pham and J. Lee, “Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases,” Nutrients, vol. 4, no. 12, pp. 1868–1886, 2012. View at Google Scholar
  155. S. K. Yekollu, R. Thomas, and B. O'Sullivan, “Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice,” Diabetes, vol. 60, no. 11, pp. 2928–2938, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Balasubramanyam, A. A. Koteswari, R. S. Kumar, S. F. Monickaraj, J. U. Maheswari, and V. Mohan, “Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications,” Journal of Biosciences, vol. 28, no. 6, pp. 715–721, 2003. View at Google Scholar · View at Scopus
  157. Y.-D. Hsuuw, C.-K. Chang, W.-H. Chan, and J.-S. Yu, “Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts,” Journal of Cellular Physiology, vol. 205, no. 3, pp. 379–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. W.-H. Chan, H.-J. Wu, and Y.-D. Hsuuw, “Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells,” Annals of the New York Academy of Sciences, vol. 1042, pp. 372–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. T. Mahesh, M. S. Balasubashini, and V. P. Menon, “Effect of photo-irradiated curcumin treatment against oxidative stress in streptozotocin-induced diabetic rats,” Journal of Medicinal Food, vol. 8, no. 2, pp. 251–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. X. Fan, C. Zhang, D. B. Liu, J. Yan, and H. P. Liang, “The clinical applications of curcumin: current state and the future,” Current Pharmaceutical Design, vol. 19, no. 11, pp. 2011–2031, 2013. View at Google Scholar
  161. C. S. Yang, S. Sang, J. D. Lambert, and M.-J. Lee, “Bioavailability issues in studying the health effects of plant polyphenolic compounds,” Molecular Nutrition and Food Research, vol. 52, no. 1, pp. S139–S151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. P. Anand, S. G. Thomas, A. B. Kunnumakkara et al., “Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1590–1611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. S. C. Gupta, S. Patchva, and B. B. Aggarwal, “Therapeutic roles of curcumin: lessons learned from clinical trials,” The AAPS Journal, vol. 15, no. 1, pp. 195–218, 2013. View at Google Scholar
  164. M. T. Abdel Aziz, M. F. El-Asmar, I. N. El-Ibrashy et al., “Effect of novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short term study),” Diabetology & Metabolic Syndrome, vol. 4, no. 1, p. 30, 2012. View at Google Scholar
  165. M. Rastogi, R. Ojha, G. V. Rajamanickam, A. Agrawal, A. Aggarwal, and G. P. Dubey, “Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain,” Free Radical Research, vol. 42, no. 11-12, pp. 999–1005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Pugazhenthi, L. Akhov, G. Selvaraj, M. Wang, and J. Alam, “Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse β-cells,” American Journal of Physiology, vol. 293, no. 3, pp. E645–E655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. S. Ponnusamy, S. Zinjarde, S. Bhargava, P. R. Rajamohanan, and A. Ravikumar, “Discovering Bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic alpha-amylase, a target for type-2 diabetes,” Food Chemistry, vol. 135, no. 4, pp. 2638–2642, 2012. View at Google Scholar
  168. T. Osawa and Y. Kato, “Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia,” Annals of the New York Academy of Sciences, vol. 1043, pp. 440–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. L. Pari and P. Murugan, “Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 16, no. 4, pp. 257–274, 2005. View at Google Scholar · View at Scopus
  170. P. Murugan and L. Pari, “Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats,” Life Sciences, vol. 79, no. 18, pp. 1720–1728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. P. Murugan and L. Pari, “Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin-nicotinamide experimental diabetes,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 17, no. 4, pp. 231–244, 2006. View at Google Scholar · View at Scopus
  172. P. Murugan and L. Pari, “Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats,” Basic and Clinical Pharmacology and Toxicology, vol. 99, no. 2, pp. 122–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  173. L. Pari and P. Murugan, “Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats,” Renal Failure, vol. 29, no. 7, pp. 881–889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. L. Pari and P. Murugan, “Changes in glycoprotein components in streptozotocin—nicotinamide induced type 2 diabetes: influence of tetrahydrocurcumin from Curcuma longa,” Plant Foods for Human Nutrition, vol. 62, no. 1, pp. 25–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  175. P. Murugan, L. Pari, and C. A. Rao, “Effect of tetrahydrocurcumin on insulin receptor status in type 2 diabetic rats: studies on insulin binding to erythrocytes,” Journal of Biosciences, vol. 33, no. 1, pp. 63–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. L. Pari and P. Murugan, “Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes,” Fundamental and Clinical Pharmacology, vol. 21, no. 6, pp. 665–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  177. L. Pari, K. Karthikesan, and V. P. Menon, “Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes,” Molecular and Cellular Biochemistry, vol. 341, no. 1-2, pp. 109–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. K. Karthikesan, L. Pari, and V. P. Menon, “Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats,” General Physiology and Biophysics, vol. 29, no. 1, pp. 23–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. B. V. Reddy, J. S. Sundari, E. Balamurugan, and V. P. Menon, “Prevention of nicotine and streptozotocin treatment induced circulatory oxidative stress by bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione in diabetic rats,” Molecular and Cellular Biochemistry, vol. 331, no. 1-2, pp. 127–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. B. V. Reddy, J. Sivagama Sundari, E. Balamurugan, and V. P. Menon, “Antihyperlipidemic effect of bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione, a curcumin analog, on nicotine and streptozotocin treated rats,” Molecular and Cellular Biochemistry, vol. 335, no. 1-2, pp. 249–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. A. Srinivasan, V. P. Menon, V. Periaswamy, and K. N. Rajasekaran, “Protection of pancreatic β-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes,” Journal of Pharmacy & Pharmaceutical Sciences, vol. 6, no. 3, pp. 327–333, 2003. View at Google Scholar · View at Scopus
  182. J. B. Majithiya, R. Balaraman, R. Giridhar, and M. R. Yadav, “Effect of bis[curcumino]oxovanadium complex on non-diabetic and streptozotocin-induced diabetic rats,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 3, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Pan, Y. Wang, L. Cai et al., “Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats,” British Journal of Pharmacology, vol. 166, no. 3, pp. 1169–1182, 2012. View at Google Scholar
  184. Y. Pan, G. Zhu, Y. Wang et al., “Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart,” The Journal of Nutritional Biochemistry, vol. 24, no. 1, pp. 146–155, 2013. View at Google Scholar
  185. P. Usharani, A. A. Mateen, M. U. R. Naidu, Y. S. N. Raju, and N. Chandra, “Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus: a randomized, parallel-group, placebo-controlled, 8-week study,” Drugs in R&D, vol. 9, no. 4, pp. 243–250, 2008. View at Publisher · View at Google Scholar · View at Scopus