Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 658531, 15 pages
Research Article

A Computational Drug-Target Network for Yuanhu Zhitong Prescription

1Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
2Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
3Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
4Capital Medical University, Beijing 100069, China

Received 20 December 2012; Accepted 10 March 2013

Academic Editor: Shao Li

Copyright © 2013 Haiyu Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Yuanhu Zhitong prescription (YZP) is a typical and relatively simple traditional Chinese medicine (TCM), widely used in the clinical treatment of headache, gastralgia, and dysmenorrhea. However, the underlying molecular mechanism of action of YZP is not clear. In this study, based on the previous chemical and metabolite analysis, a complex approach including the prediction of the structure of metabolite, high-throughput in silico screening, and network reconstruction and analysis was developed to obtain a computational drug-target network for YZP. This was followed by a functional and pathway analysis by ClueGO to determine some of the pharmacologic activities. Further, two new pharmacologic actions, antidepressant and antianxiety, of YZP were validated by animal experiments using zebrafish and mice models. The forced swimming test and the tail suspension test demonstrated that YZP at the doses of 4 mg/kg and 8 mg/kg had better antidepressive activity when compared with the control group. The anxiolytic activity experiment showed that YZP at the doses of 100 mg/L, 150 mg/L, and 200 mg/L had significant decrease in diving compared to controls. These results not only shed light on the better understanding of the molecular mechanisms of YZP for curing diseases, but also provide some evidence for exploring the classic TCM formulas for new clinical application.