Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 690808, 9 pages
http://dx.doi.org/10.1155/2013/690808
Research Article

Protective Effects of Lycium barbarum Polysaccharides on Testis Spermatogenic Injury Induced by Bisphenol A in Mice

College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China

Received 25 July 2013; Revised 27 November 2013; Accepted 27 November 2013

Academic Editor: Rainer W. Bussmann

Copyright © 2013 Caili Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

To observe the effects of Lycium barbarum polysaccharides (LBP) on testis spermatogenic injuries induced by Bisphenol A (BPA) in mice. BPA was subcutaneously injected into mice at a dose of 20 mg/kg body weight (BW) for 7 consecutive days. LBP was administered simultaneously with BPA by gavage daily at the dose of 50, 100, and 200 mg/kg BW for 7 days. After treatment, the weight and the histopathology changes of testis and epididymis were examined; the contents of T, LH, GnRH, antioxidant enzyme, and malondialdehyde (MDA) in serum were detected; proapoptotic protein Bax and antiapoptotic protein Bcl-2 were also detected by immunohistochemical method. Results showed that the weights of testis and epididymis were all increased after supplement with different dosages of LBP compared with BPA group, and the activities of SOD and GSH-Px were significantly increased in LBP groups, while MDA contents were gradually decreased. Moreover, the levels of T, LH, and GnRH were significantly elevated in serum treated with 100 mg/kg LBP. LBP also shows significant positive effects on the expression of Bcl-2/Bax in BPA treated mice. It is concluded that LBP may be one of the potential ingredients protecting the adult male animals from BPA induced reproductive damage.