Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 703024, 10 pages
http://dx.doi.org/10.1155/2013/703024
Research Article

Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing

1Instituto de Química, Universidade Estadual Paulista (UNESP) CP 355, 14800-900 Araraquara, SP, Brazil
2Faculdade de Odontologia, Universidade Estadual Paulista (UNESP) Rua Humaitá 1680, 14801-903 Araraquara, SP, Brazil
3Laboratório de Pesquisa, Desenvolvimento e Inovação (P, D and I)-Apis Flora Industrial e Comercial Ltda. Rua Triunfo 945, 14020-670 Ribeirão Preto, SP, Brazil
4Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil

Received 11 January 2013; Revised 30 April 2013; Accepted 13 May 2013

Academic Editor: Zenon Czuba

Copyright © 2013 Hernane da Silva Barud et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. de Castro, M. Savoldi, D. Bonatto et al., “Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae,” Eukaryotic Cell, vol. 10, no. 3, pp. 398–411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. da Silva Filho, J. P. B. de Sousa, S. Soares et al., “Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D. C. (Asteraceae),” Zeitschrift fur Naturforschung C, vol. 63, no. 1-2, pp. 40–46, 2008. View at Google Scholar · View at Scopus
  3. T. Urushisaki, T. Takemura, S. Tazawa et al., “Caffeoylquinic acids are major constituents with potent anti-influenza effects in brazilian green propolis water extract,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 254914, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. M. Souza, M. C. De Souza, M. L. Patitucci, and J. F. M. Silva, “Evaluation of antioxidant and antimicrobial activities and characterization of bioactive components of two Brazilian propolis samples using a pK a-guided fractionation,” Zeitschrift fur Naturforschung C, vol. 62, no. 11-12, pp. 801–807, 2007. View at Google Scholar · View at Scopus
  5. F. Marquele-Oliveira, Y. M. Fonseca, O. de Freitas, and M. J. V. Fonseca, “Development of topical functionalized formulations added with propolis extract: stability, cutaneous absorption and in vivo studies,” International Journal of Pharmaceutics, vol. 342, no. 1-2, pp. 40–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. M. Fonseca, F. Marquele-Oliveira, F. T. M. C. Vicentini et al., “Evaluation of the potential of Brazilian propolis against UV-induced oxidative stress,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 863917, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Gregory, N. Piccolo, M. T. Piccolo, M. S. Piccolo, and J. P. Heggers, “Comparison of propolis skin cream to silver sulfadiazine: a naturopathic alternative to antibiotics in treatment of minor burns,” Journal of Alternative and Complementary Medicine, vol. 8, no. 1, pp. 77–83, 2002. View at Google Scholar · View at Scopus
  8. A. A. Berretta, A. P. Nascimento, P. C. P. Bueno, M. M. D. O. L. Leite Vaz, and J. M. Marchetti, “Propolis standardized extract (EPP-AF), an innovative chemically and biologically reproducible pharmaceutical compound for treating wounds,” International Journal of Biological Sciences, vol. 8, no. 4, pp. 512–521, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Koo, B. P. F. A. Gomes, P. L. Rosalen, G. M. B. Ambrosano, Y. K. Park, and J. A. Cury, “In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens,” Archives of Oral Biology, vol. 45, no. 2, pp. 141–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Jorge, N. A. J. C. Furtado, J. P. B. Sousa et al., “Brazilian propolis: seasonal variation of the prenylated p-coumaric acids and antimicrobial activity,” Pharmaceutical Biology, vol. 46, no. 12, pp. 889–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Rojas, C. C. Finnerty, R. S. Radhakrishnan, S. Ravi, and D. N. Herndon, “Burns: an update on current pharmacotherapy,” Expert Opinion on Pharmacotherapy, vol. 13, no. 17, pp. 2485–2494, 2012. View at Google Scholar
  12. S. Nasser, A. Mabrouk, and A. Maher, “Colonization of burn wounds in Ain Shams University Burn Unit,” Burns, vol. 29, no. 3, pp. 229–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. L. Gerding, C. L. Emerman, D. Effron, T. Lukens, A. L. Imbembo, and R. B. Fratianne, “Outpatient management of partial-thickness burns: biobrane versus 1% silver sulfadiazine,” Annals of Emergency Medicine, vol. 19, no. 2, pp. 121–124, 1990. View at Google Scholar · View at Scopus
  14. E. Trovatti, C. S. R. Freire, P. C. Pinto et al., “Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies,” International Journal of Pharmaceutics, vol. 435, no. 1, pp. 83–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Klemm, D. Schumann, U. Udhardt, and S. Marsch, “Bacterial synthesized cellulose—artificial blood vessels for microsurgery,” Progress in Polymer Science, vol. 26, no. 9, pp. 1561–1603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Czaja, A. Krystynowicz, S. Bielecki, and R. M. Brown Jr., “Microbial cellulose—the natural power to heal wounds,” Biomaterials, vol. 27, no. 2, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Saska, R. M. Scarel-Caminaga, L. N. Teixeira et al., “Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering,” Journal of Materials Science, vol. 23, no. 9, pp. 2253–2266, 2012. View at Google Scholar
  18. N. Sanchavanakit, W. Sangrungraungroj, R. Kaomongkolgit, T. Banaprasert, P. Pavasant, and M. Phisalaphong, “Growth of human keratinocytes and fibroblasts on bacterial cellulose film,” Biotechnology Progress, vol. 22, no. 4, pp. 1194–1199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Barud, T. Regiani, R. F. C. Marques, W. R. Lustri, Y. Messaddeq, and S. J. L. Ribeiro, “Antimicrobial bacterial cellulose-silver nanoparticles composite membranes,” Journal of Nanomaterials, vol. 2011, Article ID 721631, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. L. C. S. Maria, A. L. C. Santos, P. C. Oliveira et al., “Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose,” Polímeros, vol. 20, no. 1, pp. 72–77, 2010. View at Google Scholar
  21. T. Maneerung, S. Tokura, and R. Rujiravanit, “Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing,” Carbohydrate Polymers, vol. 72, no. 1, pp. 43–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Rocha, M. R. Rodrigues, P. C. P. Bueno et al., “Preparation and thermal characterization of inclusion complex of Brazilian green propolis and hydroxypropyl-β-cyclodextrin: increased water solubility of the chemical constituents and antioxidant activity,” Journal of Thermal Analysis and Calorimetry, vol. 108, no. 1, pp. 87–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. Clinical and Laboratory Standards Institute (CLSI), “Performance standards for antimicrobial disk susceptibility tests,” Approved Standard, 10th Edition, CLSI document M02-A10, 2009.
  24. ASTM F981-04, Standard Practice For Assessment of Compatibility of Biomaterials For Surgical Implants With Respect To Effect of Materials on Muscle and Bone, 2010.
  25. A. C. O'Sullivan, “Cellulose: the structure slowly unravels,” Cellulose, vol. 4, no. 3, pp. 173–207, 1997. View at Google Scholar · View at Scopus
  26. M. Kakuráková, A. C. Smith, M. J. Gidley, and R. H. Wilson, “Molecular interactions in bacterial cellulose composites studied by 1D FR-IR and dynamic 2D FT-IR spectroscopy,” Carbohydrate Research, vol. 337, pp. 1145–1153, 2002. View at Google Scholar
  27. H. S. Barud, R. M. N. Assunção, M. A. U. Martines et al., “Bacterial cellulose-silica organic-inorganic hybrids,” Journal of Sol-Gel Science and Technology, vol. 46, no. 3, pp. 363–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. S. Barud, C. A. Ribeiro, M. S. Crespi et al., “Thermal characterization of bacterial cellulose-phosphate composite membranes,” Journal of Thermal Analysis and Calorimetry, vol. 87, no. 3, pp. 815–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. T. B. De Salvi, H. S. Barud, J. M. A. Caiut, Y. Messaddeq, and S. J. L. Ribeiro, “Self-supported bacterial cellulose/boehmite organic-inorganic hybrid films,” Journal of Sol-Gel Science and Technology, vol. 63, no. 2, pp. 211–218, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Klemm, F. Kramer, S. Moritz et al., “Nanocelluloses: a new family of nature-based materials,” Angewandte Chemie, vol. 50, no. 24, pp. 5438–5466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. A. Rocha, P. C. P. Bueno, M. M. O. L. L. Vaz et al., “Evaluation of a propolis water extract using a reliable RP-HPLC methodology and in vitro and in vivo efficacy and safety characterisation,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 670451, 11 pages, 2013. View at Publisher · View at Google Scholar
  32. G. P. S. R. de Rezende, F. C. Pimenta, and L. R. R. S. da Costa, “Antimicrobial activity of two Brazilian commercial propolis extracts,” Brazilian Journal of Oral Sciences, vol. 5, no. 16, pp. 967–970, 2006. View at Google Scholar
  33. U. Geyer, T. Heinze, A. Stein et al., “Formation, derivatization and applications of bacterial cellulose,” International Journal of Biological Macromolecules, vol. 16, no. 6, pp. 343–347, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Rebello, D. A. Almeida, E. M. Lima Jr., and M. P. Dornelas, “Bio-fill, um novo substituto de pele: nossa experiência,” Revista Brasileira De Cirurgia, vol. 77, pp. 407–414, 1987. View at Google Scholar
  35. J. D. Fontana, A. M. de Souza, C. K. Fontana et al., “Acetobacter cellulose pellicle as a temporary skin substitute,” Applied Biochemistry and Biotechnology, vol. 24-25, pp. 253–264, 1990. View at Google Scholar · View at Scopus
  36. R. C. Mayall, A. C. Mayall, L. C. Mayall, H. C. Rocha, and L. C. Marques, “Tratamento das úlceras tróficas dos membros com um novo substituto de pele,” Revista Brasileira De Cirurgia, vol. 80, pp. 257–283, 1990. View at Google Scholar
  37. A. F. P. F. Wouk, J. M. Diniz, S. M. Cirio, H. Santos, E. L. Baltazar, and A. Acco, “Membrana biológica (Biofill)—estudo comparativo com outros agentes promotores da cicatrização de pele em suínos: aspectos clínicos, histopatológicos e morfométricos,” Archives of Veterinary Science, vol. 3, pp. 31–37, 1998. View at Google Scholar
  38. F. K. Andrade, R. Costa, L. Domingues, R. Soares, and M. Gama, “Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide,” Acta Biomaterialia, vol. 6, no. 10, pp. 4034–4041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm, and B. Risberg, “In vivo biocompatibility of bacterial cellulose,” Journal of Biomedical Materials Research A, vol. 76, no. 2, pp. 431–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. P. N. Mendes, S. C. Rahal, O. C. M. Pereira-Junior et al., “In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair,” Acta Veterinaria Scandinavica, vol. 51, no. 1, article 12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W. L. Amorim, H. O. Costa, F. C. de Souza, M. G. de Castro, and L. da Silva, “Estudo experimental da resposta tecidual à presença de celulose produzida por Acetobacter xylinum no dorso nasal de coelhos,” Brazilian Journal of Otorhinolaryngology, vol. 75, pp. 200–207, 2009. View at Google Scholar
  42. N. Paulino, C. Teixeira, R. Martins et al., “Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis,” Planta Medica, vol. 72, no. 10, pp. 899–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. L. Machado, A. K. M. Assunção, M. C. P. da Silva et al., “Brazilian green propolis: anti-inflammatory property by an immunomodulatory activity,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 157652, 10 pages, 2012. View at Publisher · View at Google Scholar
  44. N. Paulino, S. R. L. Abreu, Y. Uto et al., “Anti-inflammatory effects of a bioavailable compound, artepillin C, in Brazilian propolis,” European Journal of Pharmacology, vol. 587, no. 1–3, pp. 296–301, 2008. View at Publisher · View at Google Scholar · View at Scopus