Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 716532, 16 pages
http://dx.doi.org/10.1155/2013/716532
Research Article

Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats

1School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Department of Basic Medical Sciences, Kulliyyah of Dentistry, Kuantan Campus, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
3Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
4Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Received 17 April 2013; Revised 22 October 2013; Accepted 30 October 2013

Academic Editor: Keji Chen

Copyright © 2013 A. Ismail et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Sumono and A. S. Wulan, “The use of bay leaf (Eugenia polyantha Wight) in dentistry,” Dental Journal, vol. 41, no. 3, pp. 147–150, 2008. View at Google Scholar
  2. P. W. Grosvenor, A. Supriono, and D. O. Gray, “Medicinal plants from Riau Province, Sumatra, Indonesia. Part 2: antibacterial and antifungal activity,” Journal of Ethnopharmacology, vol. 45, no. 2, pp. 97–111, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Mohamed, S. Saka, S. H. El-Sharkawy, A. M. Ali, and S. Muid, “Antimycotic screening of 58 malaysian plants against plant pathogens,” Pesticide Science, vol. 47, no. 3, pp. 259–264, 1996. View at Google Scholar · View at Scopus
  4. M. M. Mackeen, A. M. Ali, M. A. Abdullah et al., “Antinematodal activity of some malaysian plant extracts against the pine wood nematode, Bursaphelenchus xylophilus,” Pesticide Science, vol. 51, no. 2, pp. 165–170, 1997. View at Google Scholar
  5. A. M. Ali, L. Y. Mooi, K. Yih Yih et al., “Anti-tumor promoting activity of some malaysian traditional vegetable (ulam) extracts by immunoblotting analysis of Raji cells,” Natural Product Sciences, vol. 6, no. 3, pp. 147–150, 2000. View at Google Scholar · View at Scopus
  6. R. A. A. Lelono, S. Tachibana, and K. Itoh, “In vitro antioxidative activities and polyphenol content of Eugenia polyantha wight grown in Indonesia,” Pakistan Journal of Biological Sciences, vol. 12, no. 24, pp. 1564–1570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. P. Wong, L. P. Leong, and J. H. W. Koh, “Antioxidant activities of aqueous extracts of selected plants,” Food Chemistry, vol. 99, no. 4, pp. 775–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. I. W. Kusuma, H. Kuspradini, E. T. Arung et al., “Biological activity and phytochemical analysis of three indonesian medicinal plants, Murraya koenigii, Syzygium polyanthum and Zingiber purpurea,” Journal of Acupuncture and Meridian Studies, vol. 4, no. 1, pp. 75–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Perumal, R. Mahmud, S. P. Piaru, L. W. Cai, and S. Ramanathan, “Potential antiradical activity and cytotoxicity assessment of Ziziphus mauritiana and Syzygium polyanthum,” International Journal of Pharmacology, vol. 8, no. 6, pp. 535–541, 2012. View at Publisher · View at Google Scholar
  10. S. Dalimartha, “Salam (Syzygium polyanthum [Wight.] Walp.),” in Atlas Tumbuhan Obat Indonesia, T. Agriwidya, Ed., vol. 2, pp. 161–165, 2000. View at Google Scholar
  11. F. Gautier, C. Kamel, S. Calsamiglia, and P. Doane, “Food additives for ruminants based on eugenol and cinnamaldehyde,” United States Patent, 2011.
  12. L. F. L. Interaminense, D. M. Jucá, P. J. C. Magalhães, J. H. Leal-Cardoso, G. P. Duarte, and S. Lahlou, “Pharmacological evidence of calcium-channel blockade by essential oil of Ocimum gratissimum and its main constituent, eugenol, in isolated aortic rings from DOCA-salt hypertensive rats,” Fundamental and Clinical Pharmacology, vol. 21, no. 5, pp. 497–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. N. Damiani, L. V. Rossoni, and D. V. Vassallo, “Vasorelaxant effects of eugenol on rat thoracic aorta,” Vascular Pharmacology, vol. 40, no. 1, pp. 59–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Nishijima, R. Uchida, K. Kameyama, N. Kawakami, T. Ohkubo, and K. Kitamura, “Mechanisms mediating the vasorelaxing action of eugenol, a pungent oil, on rabbit arterial tissue,” Japanese Journal of Pharmacology, vol. 79, no. 3, pp. 327–334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Lahlou, L. F. L. Interaminense, P. J. C. Magalhães, J. H. Leal-Cardoso, and G. P. Duarte, “Cardiovascular effects of eugenol, a phenolic compound present in many plant essential oils, in normotensive rats,” Journal of Cardiovascular Pharmacology, vol. 43, no. 2, pp. 250–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. M. Wartini, “Senyawa penyusun ekstrak flavor daun salam (Eugenia polyantha Wight) hasil distilasi uap menggunakan pelarut n-heksana dan tanpa n-heksana,” Agrotekno, vol. 15, no. 2, pp. 72–77, 2009. View at Google Scholar
  17. I. A. C. Menezes, C. M. N. Barreto, Â. R. Antoniolli, M. R. V. Santos, and D. P. de Sousa, “Hypotensive activity of terpenes found in essential oils,” Journal of Biosciences, vol. 65, no. 9-10, pp. 562–566, 2010. View at Google Scholar · View at Scopus
  18. K. E. H. El Tahir, M. F. Al-Ajmi, and A. M. Al-Bekairi, “Some cardiovascular effects of the dethymoquinonated Nigella sativa volatile oil and its major components α-pinene and p-cymene in rats,” Saudi Pharmaceutical Journal, vol. 11, no. 3, pp. 104–110, 2003. View at Google Scholar · View at Scopus
  19. C. C. Chiueh and I. J. Kopin, “Hyperresponsivitiy of spontaneously hypertensive rat to indirect measurement of blood pressure,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 234, no. 6, pp. H690–H695, 1978. View at Google Scholar · View at Scopus
  20. S. Lahlou, A. F. Figueiredo, P. J. C. Magalhães, J. H. Leal-Cardoso, and P. D. Gloria, “Cardiovascular effects of methyleugenol, a natural constituent of many plant essential oils, in normotensive rats,” Life Sciences, vol. 74, no. 19, pp. 2401–2412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lahlou, J. H. Leal-Cardoso, P. J. C. Magalhães, A. N. Coelho-de-Souza, and G. P. Duarte, “Cardiovascular effects of the essential oil of Croton nepetaefolius in rats: role of the autonomic nervous system,” Planta Medica, vol. 65, no. 6, pp. 553–557, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Lahlou, A. F. Figueiredo, P. J. C. Magalhães, and J. H. Leal-Cardoso, “Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats,” Canadian Journal of Physiology and Pharmacology, vol. 80, no. 12, pp. 1125–1131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Y. Zhang and B. K. H. Tan, “Mechanisms of cardiovascular activity of Andrographis paniculata in the anaesthetized rat,” Journal of Ethnopharmacology, vol. 56, no. 2, pp. 97–101, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-P. Fluckiger, M. Sonnay, N. Boillat, and J. Atkinson, “Attenuation of the baroreceptor reflex by general anesthetic agents in the normotensive rat,” European Journal of Pharmacology, vol. 109, no. 1, pp. 105–109, 1985. View at Google Scholar · View at Scopus
  25. I. A. Medeiros, M. R. V. Santos, N. M. S. Nascimento, and J. C. Duarte, “Cardiovascular effects of Sida cordifolia leaves extract in rats,” Fitoterapia, vol. 77, no. 1, pp. 19–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Kitjaroennirut, C. Jansakul, and P. Sawangchote, “Cardiovascular effects of Tacca integrifolia Ker-Gawl extract in rats,” The Songklanakarin Journal of Science and Technology, vol. 27, no. 2, pp. 281–289, 2005. View at Google Scholar
  27. A. A. Adeneye, O. P. Ajagbonna, F. B. O. Mojiminiyi et al., “The hypotensive mechanisms for the aqueous stem bark extract of Musanga cecropioides in sprague-dawley rats,” Journal of Ethnopharmacology, vol. 106, no. 2, pp. 203–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Y. Zhang and B. K. H. Tan, “Hypotensive activity of aqueous extract of Andrographis paniculata in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 23, no. 8, pp. 675–678, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Kamkaew, C. N. Scholfield, K. Ingkaninan et al., “Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 790–795, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. C. Michel, O.-R. Brodde, and P. A. Insel, “Peripheral adrenergic receptors in hypertension,” Hypertension, vol. 16, no. 2, pp. 107–120, 1990. View at Google Scholar · View at Scopus
  31. M. W. Holladay, M. J. Dart, and J. K. Lynch, “Neuronal nicotinic acetylcholine receptors as targets for drug discovery,” Journal of Medicinal Chemistry, vol. 40, no. 26, pp. 4169–4194, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. M. T. Piascik, E. E. Soltis, M. M. Piascik, and L. B. Macmillan, “α-adrenoceptors and vascular regulation: molecular, pharmacologic and clinical correlates,” Pharmacology and Therapeutics, vol. 72, no. 3, pp. 215–241, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. P. A. Van Zwieten, M. J. Thoolen, and P. B. Timmermans, “The hypotensive activity and side effects of methyldopa, clonidine, and guanfacine,” Hypertension, vol. 6, no. 5, pp. II28–II33, 1984. View at Google Scholar · View at Scopus
  34. A. De Jonge, P. B. Timmermans, and P. A. Van Zwieten, “Participation of cardiac presynaptic α2-adrenoceptors in the bradycardiac effects of clonidine and analogues,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 317, no. 1, pp. 8–12, 1981. View at Google Scholar · View at Scopus
  35. L. L. Darga, M. J. Hakim, C. P. Lucas, and B. A. Franklin, “Comparison of the effects of guanadrel sulfate and propranolol on blood pressure, functional capacity, serum lipoproteins and glucose in systemic hypertension,” American Journal of Cardiology, vol. 67, no. 7, pp. 590–596, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Berg, B. W. Piercey, and J. Jensen, “Role of β1-3-adrenoceptors in blood pressure control at rest and during tyramine-induced norepinephrine release in spontaneously hypertensive rats,” Hypertension, vol. 55, no. 5, pp. 1224–1230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. R. Queen, Y. Ji, B. Xu et al., “Mechanisms underlying β2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells,” Journal of Physiology, vol. 576, no. 2, pp. 585–594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Kumari, S. Sreetama, and K. P. Mohanakumar, “Atropine, a muscarinic cholinergic receptor antagonist increases serotonin, but not dopamine levels in discrete brain regions of mice,” Neuroscience Letters, vol. 423, no. 2, pp. 100–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Gomeza, H. Shannon, E. Kostenis et al., “Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1692–1697, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. C. M. Boulanger, K. J. Morrison, and P. M. Vanhoutte, “Mediation by M3-muscarinic receptors of both endothelium-dependent contraction and relaxation to acetylcholine in the aorta of the spontaneously hypertensive rat,” British Journal of Pharmacology, vol. 112, no. 2, pp. 519–524, 1994. View at Google Scholar · View at Scopus
  41. G. Tobin, D. Giglio, and O. Lundgren, “Muscarinic receptor subtypes in the alimentary tract,” Journal of Physiology and Pharmacology, vol. 60, no. 1, pp. 3–21, 2009. View at Google Scholar · View at Scopus