Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 761323, 13 pages
http://dx.doi.org/10.1155/2013/761323
Research Article

Trans-β-Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.)

1Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco D, Sala D1-44, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
2Faculdade de Farmácia, Centro de Ciências da Saúde, Bloco K, 2° Andar, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
3Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil

Received 11 March 2013; Accepted 1 June 2013

Academic Editor: Marco Leonti

Copyright © 2013 Deivid C. Soares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Desjeux, “Leishmaniasis: current situation and new perspectives,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 27, no. 5, pp. 305–318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Alvar, I. D. Vélez, C. Bern et al., “Leishmaniasis worldwide and global estimates of its incidence,” PLoS One, vol. 7, no. 5, Article ID e35671, 2012. View at Google Scholar
  3. H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia, “Advances in leishmaniasis,” The Lancet, vol. 366, no. 9496, pp. 1561–1577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Croft, M. P. Barrett, and J. A. Urbina, “Chemotherapy of trypanosomiases and leishmaniasis,” Trends in Parasitology, vol. 21, no. 11, pp. 508–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Berman, “Current treatment approaches to leishmaniasis,” Current Opinion in Infectious Diseases, vol. 16, no. 5, pp. 397–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Seifert and S. L. Croft, “In vitro and in vivo interactions between miltefosine and other antileishmanial drugs,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 1, pp. 73–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. V. F. Veiga Jr. and A. C. Pinto, “The Copaifera L. genus,” Quimica Nova, vol. 25, no. 2, pp. 273–286, 2002. View at Google Scholar · View at Scopus
  8. L. H. O. Wadt, K. M. C. H. De Jáuregui, E. A. De Araْjo, A. S. Felinto, A. H. Vieira, and M. Bentes-Gama, “Efeito do tipo e época de extração na produção do óleo-resina de Copaíba,” in Proceedings of the Anais do 8th Congresso de Ecologia do Brasil, Caxambu, Brasil, 2007.
  9. V. F. Veiga Jr., E. C. Rosas, M. V. Carvalho, M. G. M. O. Henriques, and A. C. Pinto, “Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—a comparative study,” Journal of Ethnopharmacology, vol. 112, no. 2, pp. 248–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. T. Carvalho, V. Cascon, L. S. Possebon et al., “Topical antiinflammatory and analgesic activities of Copaifera duckei Dwyer,” Phytotherapy Research, vol. 19, no. 11, pp. 946–950, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. R. M. Lima, V. F. Veiga Jr., H. B. Christo, A. C. Pinto, and P. D. Fernandes, “In vivo and in vitro studies on the anticancer activity of Copaifera multijuga Hayne and its fractions,” Phytotherapy Research, vol. 17, no. 9, pp. 1048–1053, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. O. Dos Santos, T. Ueda-Nakamura, B. P. Dias Filho, V. F. Veiga Jr., A. C. Pinto, and C. V. Nakamura, “Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus,” Memorias do Instituto Oswaldo Cruz, vol. 103, no. 3, pp. 277–281, 2008. View at Google Scholar · View at Scopus
  13. F. D. F. Fernandes and E. D. P. S. Freitas, “Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae),” Veterinary Parasitology, vol. 147, no. 1-2, pp. 150–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. H. G. Da Silva, R. Geris, E. Rodrigues Filho, C. Rocha, and I. G. Da Silva, “Larvicidal activity of oil-resin fractions from the Brazilian medicinal plant Copaifera reticulata Ducke (Leguminosae-Caesalpinoideae) against Aedes aegypti (Diptera, Culicidae),” Revista da Sociedade Brasileira de Medicina Tropical, vol. 40, no. 3, pp. 264–267, 2007. View at Google Scholar · View at Scopus
  15. L. A. F. Paiva, V. S. N. Rao, N. V. Gramosa, and E. R. Silveira, “Gastroprotective effect of Copaifera langsdorffii oleo-resin on experimental gastric ulcer models in rats,” Journal of Ethnopharmacology, vol. 62, no. 1, pp. 73–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. F. Bento, R. Marcon, R. C. Dutra et al., “β-caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway,” American Journal of Pathology, vol. 178, no. 3, pp. 1153–1166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. M. Gomes, C. M. Rezende, S. P. Fontes, M. E. Matheus, and P. D. Fernandes, “Antinociceptive activity of Amazonian Copaiba oils,” Journal of Ethnopharmacology, vol. 109, no. 3, pp. 486–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. O. Santos, T. Ueda-Nakamura, V. F. Veiga Junior, A. C. Pinto, and C. V. Nakamura, “Effect of Brazilian copaiba oils on Leishmania amazonensis,” Journal of Ethnopharmacology, vol. 120, no. 2, pp. 204–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. O. dos Santos, M. A. Costa, T. Ueda-Nakamura et al., “Leishmania amazonensis: effects of oral treatment with copaiba oil in mice,” Experimental Parasitology, vol. 129, no. 2, pp. 145–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Wasicky, “Essencial oil extractor apparatus. Modification of Clevenger apparatus,” Revista de Farmácia e Bioquímica da Universidade de São Paulo, vol. 1, no. 1, pp. 77–81, 1963. View at Google Scholar
  21. R. Adams, Identification of Essential Oil Components by Gas Chromatography / Mass Spectrometry, Allured, Chicago, Ill, USA, 2007.
  22. C. Ferreira, D. C. Soares, C. B. Barreto-Junior et al., “Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis,” Phytochemistry, vol. 72, no. 17, pp. 2155–2164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. W. Roehm, G. H. Rodgers, S. M. Hatfield, and A. L. Glasebrook, “An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT,” Journal of Immunological Methods, vol. 142, no. 2, pp. 257–265, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Green, M. S. Meltzer, J. B. Hibbs Jr., and C. A. Nacy, “Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism,” Journal of Immunology, vol. 144, no. 1, pp. 278–283, 1990. View at Google Scholar · View at Scopus
  25. D. C. Soares, C. G. Pereira, M. Â. A. Meireles, and E. M. Saraiva, “Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis,” Parasitology International, vol. 56, no. 2, pp. 135–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Field, R. V. Dilts, R. Ravichandran, P. G. Lenhert, and G. E. Carnahan, “An unusually stable thionitrite from N-acetyl-D,L-penicillamine; X-ray crystal and molecular structure of 2-(acetylamino)-2-carboxy-1,1-dimethylethyl thionitrite,” Journal of the Chemical Society, Chemical Communications, no. 6, pp. 249–250, 1978. View at Publisher · View at Google Scholar · View at Scopus
  27. L. M. Leandro, F. De Sousa Vargas, P. C. S. Barbosa, J. K. O. Neves, J. A. Da Silva, and V. F. Da Veiga Jr., “Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins,” Molecules, vol. 17, no. 4, pp. 3866–3889, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Cascon and B. Gilbert, “Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera duckei Dwyer and Copaifera multijuga Hayne,” Phytochemistry, vol. 55, no. 7, pp. 773–778, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. M. W. Biavatti, D. Dossin, F. C. Deschamps, and M. P. Lima, “Copaiba oil-resin analysis: contribution to quality control,” Brazilian Journal of Pharmacognsosy, vol. 16, no. 2, pp. 230–235, 2006. View at Google Scholar
  30. F. C. Rondon, C. M. Bevilaqua, M. P. Accioly et al., “In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi,” Revista Brasileira de Parasitologia Veterinaria, vol. 21, no. 3, pp. 185–191, 2012. View at Google Scholar
  31. C. Ghelardini, N. Galeotti, L. Di Cesare Mannelli, G. Mazzanti, and A. Bartolini, “Local anaesthetic activity of β-caryophyllene,” Farmaco, vol. 56, no. 5-7, pp. 387–389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Amiel, R. Ofir, N. Dudai, E. Soloway, T. Rabinsky, and S. Rachmilevitch, “β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 872394, 8 pages, 2012. View at Publisher · View at Google Scholar
  33. B. Sabulal, M. Dan, A. J. J et al., “Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity,” Phytochemistry, vol. 67, no. 22, pp. 2469–2473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Kubo, S. K. Chaudhuri, Y. Kubo et al., “Cytotoxic and antioxidative sesquiterpenoids from Heterotheca inuloides,” Planta Medica, vol. 62, no. 5, pp. 427–430, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Ashour, M. El-Readi, M. Youns et al., “Chemical composition and biological activity of the essential oil obtained from Bupleurum marginatum (Apiaceae),” Journal of Pharmacy and Pharmacology, vol. 61, no. 8, pp. 1079–1087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y.-T. Tung, M.-T. Chua, S.-Y. Wang, and S.-T. Chang, “Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs,” Bioresource Technology, vol. 99, no. 9, pp. 3908–3913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Gertsch, “Anti-inflammatory cannabinoids in diet: towards a better understanding of CB(2) receptor action?” Communicative & Integrative Biology, vol. 1, pp. 26–28, 2008. View at Google Scholar
  38. C. V. Nakamura, A. O. Dos Santos, T. Ueda-Nakamura, B. P. Dias Filho, and V. F. Da Veiga Junior, “Copaiba oil: an alternative to development of new drugs against leishmaniasis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 898419, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Izumi, T. Ueda-Nakamura, V. F. Veiga Jr., A. C. Pinto, and C. V. Nakamura, “Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity,” Journal of Medicinal Chemistry, vol. 55, no. 7, pp. 2994–3001, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. Loizzo, R. Tundis, F. Menichini, A. M. Saab, G. A. Statti, and F. Menichini, “Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells,” Cell Proliferation, vol. 41, no. 6, pp. 1002–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Y. Eid, M. Z. El-Readi, and M. Wink, “Digitonin synergistically enhances the cytotoxicity of plant secondary metabolites in cancer cells,” Phytomedicine, vol. 19, pp. 1307–1314, 2012. View at Google Scholar
  42. I. Lampronti, A. M. Saab, and R. Gambari, “Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division,” International Journal of Oncology, vol. 29, no. 4, pp. 989–995, 2006. View at Google Scholar · View at Scopus
  43. S. Mulyaningsih, M. Youns, M. Z. El-Readi et al., “Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components,” Journal of Pharmacy and Pharmacology, vol. 62, no. 8, pp. 1037–1044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. K.-R. Park, D. Nam, H.-M. Yun et al., “β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation,” Cancer Letters, vol. 312, no. 2, pp. 178–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. M. Esenfeld, Identification of target proteins of furan reactive metabolites in rat liver [Ph.D. thesis], Bayerischen Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2011.
  46. E. L. Maistro, J. C. Tavares Carvalho, V. Cascon, and M. A. Coelho Kaplan, “In vivo evaluation of the mutagenic potential and phytochemical characterization of oleoresin from Copaifera duckei Dwyer,” Genetics and Molecular Biology, vol. 28, no. 4, pp. 833–838, 2005. View at Google Scholar · View at Scopus
  47. M. R. Almeida, J. D. C. Joana D’Arc Castania Darin, L. C. Hernandes, M. F. S. Ramos, L. M. G. Antunes, and O. Freitas, “Genotoxicity assessment of Copaiba oil and its fractions in Swiss mice,” General Molecular Biology, vol. 35, no. 3, pp. 664–672, 2012. View at Google Scholar