Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 795365, 12 pages
http://dx.doi.org/10.1155/2013/795365
Research Article

Postischemic Long-Term Treatment with Qiangli Tianma Duzhong Capsule Improves Brain Functional Recovery via the Improvement of Hemorrheology and the Inhibition of Platelet Aggregation in a Rat Model of Focal Cerebral Ischemia

1Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
2ChunKe Guiyang Pharmaceutical R & D Co., Ltd., Guiyang 550018, China
3Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China

Received 13 June 2013; Accepted 19 August 2013

Academic Editor: Chris J. Branford-White

Copyright © 2013 Li-Zhi Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. M. Mohammad, A. A. Divani, J. F. Kirmani, P. Harris-Lane, and A. I. Qureshi, “Acute treatment for ischemic stroke in 2004,” Emergency Radiology, vol. 11, no. 2, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. D. Cheng, L. Al-Khoury, and J. A. Zivin, “Neuroprotection for Ischemic Stroke: two decades of success and failure,” NeuroRx, vol. 1, no. 1, pp. 36–45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M.-S. Lee, D.-Y. Yang, C.-L. Cheng, Y.-J. Liang, L.-L. Yang, and F.-C. Cheng, “Ginkgo biloba extract preserves pyruvate and enhances ascorbate in the cortex of gerbils during focal cerebral ischemia: a microdialysis-liquid chromatography study,” Journal of Chromatography A, vol. 985, no. 1-2, pp. 387–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. X.-Q. Cao, X.-M. Zhang, X.-B. Wei, L.-X. Wang, and H.-Q. Liu, “Protective effects of gypenosides on focal brain ischemia-reperfusion injury in rats,” Chinese Pharmaceutical Journal, vol. 37, no. 7, pp. 499–502, 2002. View at Google Scholar · View at Scopus
  5. J. T. Hong, S. R. Ryu, H. J. Kim et al., “Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils,” Brain Research, vol. 888, no. 1, pp. 11–18, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Yan, D.-Y. Wang, D.-M. Xing et al., “The antidepressant effect of ethanol extract of radix puerariae in mice exposed to cerebral ischemia reperfusion,” Pharmacology Biochemistry and Behavior, vol. 78, no. 2, pp. 319–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Numagami, S. Sato, and S. T. Ohnishi, “Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants,” Neurochemistry International, vol. 29, no. 2, pp. 135–143, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-L. Zhang, Z.-L. Gu, S. I. Savitz, F. Han, K. Fukunaga, and Z.-H. Qin, “Neuroprotective effects of prostaglandin A1 in rat models of permanent focal cerebral ischemia are associated with nuclear factor-κB inhibition and peroxisome proliferator-activated receptor-γ up-regulation,” Journal of Neuroscience Research, vol. 86, no. 5, pp. 1132–1141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. L. Zhang, M. Chopp, Z. G. Zhang, Q. Jiang, and J. R. Ewing, “A rat model of focal embolic cerebral ischemia,” Brain Research, vol. 766, no. 1-2, pp. 83–92, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Schallert, S. M. Fleming, J. L. Leasure, J. L. Tillerson, and S. T. Bland, “CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury,” Neuropharmacology, vol. 39, no. 5, pp. 777–787, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Haelewyn, T. Freret, E. Pacary et al., “Long-term evaluation of sensorimotor and mnesic behaviour following striatal NMDA-induced unilateral excitotoxic lesion in the mouse,” Behavioural Brain Research, vol. 178, no. 2, pp. 235–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Brenneman, S. Sharma, M. Harting et al., “Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 1, pp. 140–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Neumann-Haefelin, A. Kastrup, A. de Crespigny et al., “Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation,” Stroke, vol. 31, no. 8, pp. 1965–1973, 2000. View at Google Scholar · View at Scopus
  14. K. Yoneda, R. Iwamura, H. Kishi, Y. Mizukami, K. Mogami, and S. Kobayashi, “Identification of the active metabolite of ticlopidine from rat in vitro metabolites,” British Journal of Pharmacology, vol. 142, no. 3, pp. 551–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Belayev, O. F. Alonso, R. Busto, W. Zhao, and M. D. Ginsberg, “Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improved model,” Stroke, vol. 27, no. 9, pp. 1616–1623, 1996. View at Google Scholar · View at Scopus
  16. L. Belayev, L. Khoutorova, K. Atkins, A. Cherqui, J. Alvarez-Builla, and N. G. Bazan, “LAU-0901, a novel platelet-activating factor receptor antagonist, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat,” Brain Research, vol. 1253, pp. 184–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Wang, Z. G. Zhang, K. Rhodes et al., “Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia,” British Journal of Pharmacology, vol. 151, no. 8, pp. 1377–1384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Kowal and A. Marcinkowska-Gapińska, “Hemorheological changes dependent on the time from the onset of ischemic stroke,” Journal of the Neurological Sciences, vol. 258, no. 1-2, pp. 132–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Velcheva and G. Nikolova, “Hemorheological disturbances and cognitive function in patients with cerebrovascular disease,” Clinical Hemorheology and Microcirculation, vol. 39, no. 1–4, pp. 397–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kuroda and B. K. Siesjö, “Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows,” Clinical Neuroscience, vol. 4, no. 4, pp. 199–212, 1997. View at Google Scholar · View at Scopus
  21. T. Abumiya, R. Fitridge, C. Mazur et al., “Integrin α(IIb)β3 inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia,” Stroke, vol. 31, no. 6, pp. 1402–1410, 2000. View at Google Scholar · View at Scopus
  22. T. F. Choudhri, B. L. Hoh, H.-G. Zerwes et al., “Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIa receptor-mediated platelet aggregation,” Journal of Clinical Investigation, vol. 102, no. 7, pp. 1301–1310, 1998. View at Google Scholar · View at Scopus