Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 817674, 9 pages
http://dx.doi.org/10.1155/2013/817674
Research Article

Subtoxic Levels of Apigenin Inhibit Expression and Secretion of VEGF by Uveal Melanoma Cells via Suppression of ERK1/2 and PI3K/Akt Pathways

1Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
2Institute of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
3Tissue Culture Center, The New York Eye and Ear Infirmary, NY 10003, USA
4Department of Optometry, Yuan Pei University, Hsinchu 30015, Taiwan

Received 5 September 2013; Accepted 23 September 2013

Academic Editor: Shun-Fa Yang

Copyright © 2013 Shih-Chun Chao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. N. Hu, G. P. Yu, S. A. McCormick, S. Schneider, and P. T. Finger, “Population-based incidence of uveal melanoma in various races and ethnic groups,” American Journal of Ophthalmology, vol. 140, no. 4, pp. 612–617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Kujala, T. Mäkitie, and T. Kivelä, “Very long-term prognosis of patients with malignant uveal melanoma,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 4651–4659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Augsburger, Z. M. Corrêa, and A. H. Shaikh, “Effectiveness of treatments for metastatic uveal melanoma,” American Journal of Ophthalmology, vol. 148, no. 1, pp. 119–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Xie, D. Wei, Q. Shi, and S. Huang, “Constitutive and inducible expression and regulation of vascular endothelial growth factor,” Cytokine and Growth Factor Reviews, vol. 15, no. 5, pp. 297–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. B. Loureiro and P. A. D'Amore, “Transcriptional regulation of vascular endothelial growth factor in cancer,” Cytokine and Growth Factor Reviews, vol. 16, no. 1, pp. 77–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Logan, J. Burnier, and M. N. Burnier Jr., “Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines,” Ecancermedicalscience, vol. 7, article 336, 2013. View at Publisher · View at Google Scholar
  7. I. C. Notting, G. S. O. A. Missotten, B. Sijmons, Z. F. H. M. Boonman, J. E. E. Keunen, and G. van der Pluijm, “Angiogenic profile of uveal melanoma,” Current Eye Research, vol. 31, no. 9, pp. 775–785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. El Filali, G. S. O. A. Missotten, W. Maat et al., “Regulation of VEGF-A in uveal melanoma,” Investigative Ophthalmology and Visual Science, vol. 51, no. 5, pp. 2329–2337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Barak, J. Pe'er, I. Kalickman, and S. Frenkel, “VEGF as a biomarker for metastatic uveal melanoma in humans,” Current Eye Research, vol. 36, no. 4, pp. 386–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Shukla and S. Gupta, “Apigenin: a promising molecule for cancer prevention,” Pharmaceutical Research, vol. 27, no. 6, pp. 962–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Patel, S. Shukla, and S. Gupta, “Apigenin and cancer chemoprevention: progress, potential and promise (review),” International Journal of Oncology, vol. 30, no. 1, pp. 233–245, 2007. View at Google Scholar · View at Scopus
  12. J. Fang, C. Xia, Z. Cao, J. Z. Zheng, E. Reed, and B. H. Jiang, “Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways,” FASEB Journal, vol. 19, no. 3, pp. 342–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Fang, Q. Zhou, L. Z. Liu et al., “Apigenin inhibits tumor angiogenesis through decreasing HIF-1α and VEGF expression,” Carcinogenesis, vol. 28, no. 4, pp. 858–864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Mirzoeva, D. K. Nam, K. Chiu, C. A. Franzen, R. C. Bergan, and J. C. Pelling, “Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells,” Molecular Carcinogenesis, vol. 47, no. 9, pp. 686–700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Shukla and S. Gupta, “Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes,” Clinical Cancer Research, vol. 10, no. 9, pp. 3169–3178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Mafuvadze, I. Benakanakere, F. R. López Pérez, C. Besch-Williford, M. R. Ellersieck, and S. M. Hyder, “Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in sprague-dawley rats,” Cancer Prevention Research, vol. 4, no. 8, pp. 1316–1324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Shukla, G. T. MacLennan, P. Fu, and S. Gupta, “Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model,” Pharmaceutical Research, vol. 29, no. 6, pp. 1506–1517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. B. R. Kim, Y. K. Jeon, and M. J. Nam, “A mechanism of apigenin-induced apoptosis is potentially related to anti-angiogenesis and anti-migration in human hepatocellular carcinoma cells,” Food and Chemical Toxicology, vol. 49, no. 7, pp. 1626–1632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. G. Melstrom, M. R. Salabat, X. Z. Ding et al., “Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells,” Journal of Surgical Research, vol. 167, no. 2, pp. 173–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Luo, B. H. Jiang, S. M. King, and Y. C. Chen, “Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids,” Nutrition and Cancer, vol. 60, no. 6, pp. 800–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Z. Liu, J. Fang, Q. Zhou, X. Hu, X. Shi, and B. H. Jiang, “Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer,” Molecular Pharmacology, vol. 68, no. 3, pp. 635–643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. N. Hu, S. A. McCormick, R. Ritch, and K. Pelton-Henrion, “Studies of human uveal melanocytes in vitro: isolation, purification and cultivation of human uveal melanocytes,” Investigative Ophthalmology and Visual Science, vol. 34, no. 7, pp. 2210–2219, 1993. View at Google Scholar · View at Scopus
  23. D. N. Hu, “Regulation of growth and melanogenesis of uveal melanocytes,” Pigment Cell Research, vol. 13, no. 8, pp. 81–86, 2000. View at Google Scholar · View at Scopus
  24. D. N. Hu, S. A. McCormick, and D. F. Woodward, “A functional study on prostanoid receptors involved in cultured human iridal melanocyte stimulation,” Experimental Eye Research, vol. 73, no. 1, pp. 93–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. D. N. Hu, K. Wakamatsu, S. Ito, and S. A. McCormick, “Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes,” Melanoma Research, vol. 19, no. 2, pp. 75–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Soulieres, A. Rousseau, J. Deschenes, M. Tremblay, M. Tardif, and G. Pelletier, “Characterization of gangliosides in human uveal melanoma cells,” International Journal of Cancer, vol. 49, no. 4, pp. 498–503, 1991. View at Google Scholar · View at Scopus
  27. K. J. Daniels, H. C. Boldt, J. A. Martin, L. M. Gardner, M. Meyer, and R. Folberg, “Expression of type VI collagen in uveal melanoma: its role in pattern formation and tumor progression,” Laboratory Investigation, vol. 75, no. 1, pp. 55–66, 1996. View at Google Scholar · View at Scopus
  28. J. J. Zhou, G. R. Xie, and X. J. Yan, Phytochemistry of Chinese Traditional Medicine, Chemical Industry Press, Beijing, China, 2004.
  29. Y. J. Shen, Pharmacology of Chinese Traditional Medicine, People's Medical Publishing House, Beijing, China, 2002.
  30. S. R. Boyd, D. S. W. Tan, L. de Souza et al., “Uveal melanomas express vascular endothelial growth factor and basic fibroblast growth factor and support endothelial cell growth,” British Journal of Ophthalmology, vol. 86, no. 4, pp. 440–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. T. G. Sheidow, P. L. Hooper, C. Crukley, J. Young, and J. G. Heathcote, “Expression of vascular endothelial growth factor in uveal melanoma and its correlation with metastasis,” British Journal of Ophthalmology, vol. 84, no. 7, pp. 750–756, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. G. S. O. Missotten, I. C. Notting, R. O. Schlingemann et al., “Vascular endothelial growth factor A in eyes with uveal melanoma,” Archives of Ophthalmology, vol. 124, no. 10, pp. 1428–1434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Boyd, D. Tan, C. Bunce et al., “Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window,” British Journal of Ophthalmology, vol. 86, no. 4, pp. 448–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Calipel, F. Mouriaux, A. L. Glotin, F. Malecaze, A. M. Faussat, and F. Mascarelli, “Extracellular signal-regulated kinase-dependent proliferation is mediated through the protein kinase A/B-Raf pathway in human uveal melanoma cells,” Journal of Biological Chemistry, vol. 281, no. 14, pp. 9238–9250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Zuidervaart, F. van Nieuwpoort, M. Stark et al., “Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS,” British Journal of Cancer, vol. 92, no. 11, pp. 2032–2038, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Pópulo, P. Soares, A. S. Rocha, P. Silva, and J. M. Lopes, “Evaluation of the mTOR pathway in ocular (uvea and conjunctiva) melanoma,” Melanoma Research, vol. 20, no. 2, pp. 107–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. V. S. Saraiva, A. L. Caissie, L. Segal, C. Edelstein, and M. N. Burnier Jr., “Immunohistochemical expression of phospho-Akt in uveal melanoma,” Melanoma Research, vol. 15, no. 4, pp. 245–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Yan, X. Zhou, X. Chen et al., “MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met,” Investigative Ophthalmology and Visual Science, vol. 50, no. 4, pp. 1559–1565, 2009. View at Publisher · View at Google Scholar · View at Scopus