Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 932581, 5 pages
http://dx.doi.org/10.1155/2013/932581
Research Article

fMRI Evidence of Acupoints Specificity in Two Adjacent Acupoints

1Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
3General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China

Received 21 February 2013; Accepted 28 March 2013

Academic Editor: Lijun Bai

Copyright © 2013 Hua Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “NIH Consensus Conference. Acupuncture,” The Journal of the American Medical Association, vol. 280, no. 17, pp. 1518–1524, 1998.
  2. J. H. Chiu, H. C. Cheng, C. H. Tai et al., “Electroacupuncture-induced neural activation detected by use of manganese-enhanced functional magnetic resonance imaging in rabbits,” American Journal of Veterinary Research, vol. 62, no. 2, pp. 178–182, 2001. View at Google Scholar · View at Scopus
  3. Z. H. Cho, T. D. Oleson, D. Alimi, and R. C. Niemtzow, “Acupuncture: the search for biologic evidence with functional magnetic resonance imaging and positron emission tomography techniques,” Journal of Alternative and Complementary Medicine, vol. 8, no. 4, pp. 399–401, 2002. View at Google Scholar · View at Scopus
  4. J. Kong, L. Ma, R. L. Gollub et al., “A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods,” Journal of Alternative and Complementary Medicine, vol. 8, no. 4, pp. 411–419, 2002. View at Google Scholar · View at Scopus
  5. J. L. Fang, T. Krings, J. Weidemann, I. G. Meister, and A. Thron, “Functional MRI in healthy subjects during acupuncture: different effects of needle rotation in real and false acupoints,” Neuroradiology, vol. 46, no. 5, pp. 359–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Li, B. Shan, J. Xu et al., “Changes in fMRI in the human brain related to different durations of manual acupuncture needling,” Journal of Alternative and Complementary Medicine, vol. 12, no. 7, pp. 615–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. Siedentopf, S. M. Golaszewski, F. M. Mottaghy, C. C. Ruff, S. Felber, and A. Schlager, “Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans,” Neuroscience Letters, vol. 327, no. 1, pp. 53–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Wu, J. C. Hsieh, J. Xiong et al., “Central nervous pathway for acupunture stimulation: localization of processing with functional MR imaging of the brain—preliminary experience,” Radiology, vol. 212, no. 1, pp. 133–141, 1999. View at Google Scholar · View at Scopus
  9. K. K. Hui, J. Liu, N. Makris et al., “Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects,” Human Brain Mapping, vol. 9, no. 1, pp. 13–25, 2000. View at Google Scholar
  10. G. Biella, M. L. Sotgiu, G. Pellegata, E. Paulesu, I. Castiglioni, and F. Fazio, “Acupuncture produces central activations in pain regions,” NeuroImage, vol. 14, no. 1, part 1, pp. 60–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Hsieh, C. H. Tu, F. P. Chen et al., “Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study,” Neuroscience Letters, vol. 307, no. 2, pp. 105–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. T. Wu, J. M. Sheen, K. H. Chuang et al., “Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture,” NeuroImage, vol. 16, no. 4, pp. 1028–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Yan, K. Li, J. Xu et al., “Acupoint-specific fMRI patterns in human brain,” Neuroscience Letters, vol. 383, no. 3, pp. 236–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Pariente, P. White, R. S. J. Frackowiak, and G. Lewith, “Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture,” NeuroImage, vol. 25, no. 4, pp. 1161–1167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. W. T. Zhang, Z. Jin, F. Luo, L. Zhang, Y. W. Zeng, and J. S. Han, “Evidence from brain imaging with fMRI supporting functional specificity of acupoints in humans,” Neuroscience Letters, vol. 354, no. 1, pp. 50–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. S. Yoo, E. K. Teh, R. A. Blinder, and F. A. Jolesz, “Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study,” NeuroImage, vol. 22, no. 2, pp. 932–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. P. Dhond, N. Kettner, and V. Napadow, “Neuroimaging acupuncture effects in the human brain,” Journal of Alternative and Complementary Medicine, vol. 13, no. 6, pp. 603–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Nakagoshi, M. Fukunaga, M. Umeda, Y. Mori, T. Higuchi, and C. Tanaka, “Somatotopic representation of acupoints in human primary somatosensory cortex: an FMRI study,” Magnetic Resonance in Medical Sciences, vol. 4, no. 4, pp. 187–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Cavanna and M. R. Trimble, “The precuneus: a review of its functional anatomy and behavioural correlates,” Brain, vol. 129, part 3, pp. 564–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Creac'h, P. Henry, J. M. Caille, and M. Allard, “Functional MR imaging analysis of pain-related brain activation after acute mechanical stimulation,” American Journal of Neuroradiology, vol. 21, no. 8, pp. 1402–1406, 2000. View at Google Scholar · View at Scopus
  21. R. Peyron, B. Laurent, and L. García-Larrea, “Functional imaging of brain responses to pain. A review and meta-analysis (2000),” Neurophysiologie Clinique, vol. 30, no. 5, pp. 263–288, 2000. View at Publisher · View at Google Scholar · View at Scopus