Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 945953, 10 pages
http://dx.doi.org/10.1155/2013/945953
Research Article

Trypanocidal Activity of Thioamide-Substituted Imidazoquinolinone: Electrochemical Properties and Biological Effects

1Departamento de Microbiología, Facultad de Medicina, IMPaM (UBA-CONICET) and Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, UBA, Paraguay 2155 P13, 1121 Buenos Aires, Argentina
2Centro de Investigaciones Sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Córdoba 2351, 1120 Buenos Aires, Argentina
3Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, UBA, Junín 956, 1113 Buenos Aires, Argentina
4Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, 2° Piso CM1, UBA, Int. Güiraldes 2160, CABA, 1428 Buenos Aires, Argentina

Received 25 February 2013; Accepted 30 May 2013

Academic Editor: Roser Vila

Copyright © 2013 Fernanda M. Frank et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Castillo, M. A. Dea-Ayuela, F. Bolás-Fernández, M. Rangel, and M. E. González-Rosende, “The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives,” Current Medicinal Chemistry, vol. 17, no. 33, pp. 4027–4051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Jannin and L. Villa, “An overview of Chagas disease treatment,” Memorias do Instituto Oswaldo Cruz, vol. 102, supplement 1, pp. 95–97, 2007. View at Google Scholar · View at Scopus
  3. L. A. Mitscher, W. C. Wong, T. DeMeulenaere, J. Sulko, and S. Drake, “Antimicrobial agents from higher plants. New synthesis and bioactivity of tryptanthrin (indolo [2, 1b]quinazolin-6, 12-dione) and its analogs,” Heterocycles, vol. 15, pp. 1017–1018, 1981. View at Google Scholar
  4. S. Miao, X. Shi, H. Zhang et al., “Proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on human chronic myeloid leukemia K562 cell line in vitro,” International Journal of Molecular Sciences, vol. 12, no. 6, pp. 3831–3845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. K. Bhattacharjee, D. J. Skanchy, B. Jennings, T. H. Hudson, J. J. Brendle, and K. A. Werbovetz, “Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures,” Bioorganic and Medicinal Chemistry, vol. 10, no. 6, pp. 1979–1989, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. M. Grant, M. H. Dunion, V. Yardley et al., “Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 8, pp. 3033–3042, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Scovill, E. Blank, M. Konnick, E. Nenortas, and T. Shapiro, “Antitrypanosomal activities of tryptanthrins,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 3, pp. 882–883, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Bhattacharjee, M. G. Hartell, D. A. Nichols et al., “Structure-activity relationship study of antimalarial indolo [2,1-b]quinazoline-6,12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates,” European Journal of Medicinal Chemistry, vol. 39, no. 1, pp. 59–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Krivogorsky, P. Grundt, R. Yolken, and L. Jones-Brando, “Inhibition of Leishmania mexicana by indirubin and tryptanthrin analogs,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 12, pp. 4466–4469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Bollini, S. E. Asís, and A. M. Bruno, “Synthesis of 2,3-dihydroimidazo[1,2-b]isoquinoline-5(1H)-one and derivatives,” Synthesis, no. 2, Article ID M03605SS, pp. 237–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bollini, J. J. Casal, D. E. Alvarez et al., “New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents: biological evaluation and structure-activity relationships,” Bioorganic and Medicinal Chemistry, vol. 17, no. 4, pp. 1437–1444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Ciccarelli, L. Araujo, A. Batlle, and E. Lombardo, “Effect of haemin on growth, protein content and the antioxidant defence system in Trypanosoma cruzi,” Parasitology, vol. 134, no. 7, pp. 959–965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. S. Buckner, C. L. M. J. Verlinde, A. C. La Flamme, and W. C. Van Voorhis, “Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing β-galactosidase,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 11, pp. 2592–2597, 1996. View at Google Scholar · View at Scopus
  14. M. Esteva, A. M. Ruiz, and A. M. Stoka, “Trypanosoma cruzi: methoprene is a potent agent to sterilize blood infected with trypomastigotes,” Experimental Parasitology, vol. 100, no. 4, pp. 248–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. B. Ciccarelli, F. M. Frank, V. Puente, E. L. Malchiodi, A. Batlle, and M. E. Lombardo, “Antiparasitic effect of vitamin B12 on Trypanosoma cruzi,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 10, pp. 5315–5320, 2012. View at Google Scholar
  16. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  17. L. Piacenza, F. Irigoín, M. N. Alvarez et al., “Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression,” Biochemical Journal, vol. 403, no. 2, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Steenkamp, “Thiol metabolism of the trypanosomatids as potential drug targets,” IUBMB Life, vol. 53, no. 4-5, pp. 243–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Müller, E. Liebau, R. D. Walter, and R. L. Krauth-Siegel, “Thiol-based redox metabolism of protozoan parasites,” Trends in Parasitology, vol. 19, no. 7, pp. 320–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Smirlis, M. Duszenko, A. J. Ruiz et al., “Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death,” Parasites and Vectors, vol. 3, no. 1, pp. 107–121, 2010. View at Google Scholar · View at Scopus