Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 986573, 13 pages
http://dx.doi.org/10.1155/2013/986573
Review Article

Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

1Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 12 April 2013; Accepted 5 September 2013

Academic Editor: Yew-Min Tzeng

Copyright © 2013 Nazeh M. Al-Abd et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Taylor, A. Hoerauf, and M. Bockarie, “Lymphatic filariasis and onchocerciasis,” The Lancet, vol. 376, no. 9747, pp. 1175–1185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. WHO, Lymphatic Filariasis, World Health Organisation, Geneva, Switzerland, 2012.
  3. M. J. Bockarie, E. M. Pedersen, G. B. White, and E. Michael, “Role of vector control in the global program to eliminate lymphatic filariasis,” Annual Review of Entomology, vol. 54, pp. 469–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Tangpu and A. K. Yadav, “In vitro filaricidal activity of some folklore medicinal plants of Manipur, India,” in Parasites and Diseases, N. Gupta and D. K. Gupta, Eds., pp. 127–132, Neeraj, Bareilly, India, 2003. View at Google Scholar
  5. C. Andrew, The Encyclopedia of Medicinal Plants, DK Publishing, New York, NY, USA, 1996.
  6. N. Kumar, P. Misra, A. Dube, S. Bhattacharya, M. Dikshit, and S. Ranade, “Piper betle Linn. a maligned pan-asiatic plant with an array of pharmacological activities and prospects for drug discovery,” Current Science, vol. 99, no. 7, pp. 922–932, 2010. View at Google Scholar · View at Scopus
  7. J. K. Patra, N. K. Dhal, and H. N. Thatoi, “In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): a mangrove associate from Bhitarkanika, India,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 9, pp. 727–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Saxena, V. Dube, V. Kushwaha et al., “Antifilarial efficacy of Hibiscus sabdariffa on lymphatic filarial parasite Brugia malayi,” Medicinal Chemistry Research, vol. 20, no. 9, pp. 1594–1602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Zaman, Z. Iqbal, R. Z. Abbas et al., “In vitro and in vivo acaricidal activity of a herbal extract,” Veterinary Parasitology, vol. 186, no. 3-4, pp. 431–436, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Katiki, J. F. S. Ferreira, J. M. Gonzalez et al., “Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity,” Veterinary Parasitology, vol. 192, no. 1–3, pp. 218–227, 2013. View at Publisher · View at Google Scholar
  11. D. Yadav, S. C. Singh, R. K. Verma et al., “Antifilarial diarylheptanoids from Alnus nepalensis leaves growing in high altitude areas of Uttarakhand, India,” Biomedicine, vol. 20, pp. 124–132, 2013. View at Google Scholar
  12. A. Al-Rofaai, W. A. Rahman, S. F. Sulaiman, and Z. S. Yahaya, “In vitro activity of neem (Azadirachta indica) and cassava (Manihot esculenta) on three pre-parasitic stages of susceptible and resistant strains of Teladorsagia (Ostertagia) circumcincta,” Veterinary Parasitology, vol. 188, no. 1-2, pp. 85–92, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Ngantchou, B. Nyasse, C. Denier, C. Blonski, V. Hannaert, and B. Schneider, “Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): their effects on three selected glycolytic enzymes of Trypanosoma brucei,” Bioorganic & Medicinal Chemistry Letters, vol. 20, no. 12, pp. 3495–3498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. D. Sheeja, D. Sindhu, J. Ebanasar, and S. Jeeva, “Larvicidal activity of Andrographis paniculata (Burm.f) Nees against Culex quinquefasciatus Say (Insecta: Diptera-Culicidae), a filarial vector,” Asian Pacific Journal of Tropical Disease, vol. 2, supplement 2, pp. S574–S578, 2012. View at Google Scholar
  15. K. V. Sashidhara, S. P. Singh, S. Misra, J. Gupta, and S. Misra-Bhattacharya, “Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi,” European Journal of Medicinal Chemistry, vol. 50, pp. 230–235, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Gupta, S. Misra, S. K. Mishra et al., “Antifilarial activity of marine sponge Haliclona oculata against experimental Brugia malayi infection,” Experimental Parasitology, vol. 130, no. 4, pp. 449–455, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Mishra, N. Parveen, K. C. Singhal, and N. U. Khan, “Antifilarial activity of Azadirachta indica on cattle filarial parasite Setaria cervi,” Fitoterapia, vol. 76, no. 1, pp. 54–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. L. Koh, T. K. Chua, and C. H. Tan, A Guide to Medicinal Plants: An Illustrated, Scientific and Medicinal Approach, World Scientific, 2009.
  19. G. E. Veitch, E. Beckmann, B. J. Burke, A. Boyer, S. L. Maslen, and S. V. Ley, “Synthesis of azadirachtin: a long but successful journey,” Angewandte Chemie International Edition, vol. 46, no. 40, pp. 7629–7632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Tripathi, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee, “Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves,” Journal of Biomedical Nanotechnology, vol. 5, no. 1, pp. 93–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Schumacher, C. Cerella, S. Reuter, M. Dicato, and M. Diederich, “Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway,” Genes and Nutrition, vol. 6, no. 2, pp. 149–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Othman, G. Motalleb, S. L. T. Peng, A. Rahmat, S. Fakurazi, and C. P. Pei, “Extract of Azadirachta indica (Neem) leaf induces apoptosis in 4T1 breast cancer BALB/c mice,” Cell Journal, vol. 13, no. 2, pp. 107–116, 2011. View at Google Scholar · View at Scopus
  23. L. Lucantoni, R. S. Yerbanga, G. Lupidi, L. Pasqualini, F. Esposito, and A. Habluetzel, “Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi,” Malaria Journal, vol. 9, no. 1, article 66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Aziz, To Study the Anti-Ulcer Effect of Azadirachta indica Leaf Extract and Isolated Compound of Neemnimolicine (Nc) in Comparison with Ulcer Healing Drugs on Gastric Mucosa of Albino Rats, Baqai Medical University, Karachi, Pakistan, 2011.
  25. C. Satyanarayana, D. S. Deevi, R. Rajagopalan, N. Srinivas, and S. Rajagopal, “DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells,” BMC Cancer, vol. 4, article 26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Lakshmi, S. Srivastava, S. Kumar Mishra, S. Misra, M. Verma, and S. Misra-Bhattacharya, “In vitro and in vivo antifilarial potential of marine sponge, Haliclona exigua (Kirkpatrick), against human lymphatic filarial parasite Brugia malayi,” Parasitology Research, vol. 105, no. 5, pp. 1295–1301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Mathew, S. Misra-Bhattacharya, V. Perumal, and K. Muthuswamy, “Antifilarial lead molecules isolated from Trachyspermum ammi,” Molecules, vol. 13, no. 9, pp. 2156–2168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Misra, M. Verma, S. K. Mishra, S. Srivastava, V. Lakshmi, and S. Misra-Bhattacharya, “Gedunin and photogedunin of Xylocarpus granatum possess antifilarial activity against human lymphatic filarial parasite Brugia malayi in experimental rodent host,” Parasitology Research, vol. 109, no. 5, pp. 1351–1360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Saini, P. Gayen, A. Nayak et al., “Effect of ferulic acid from Hibiscus mutabilis on filarial parasite Setaria cervi: molecular and biochemical approaches,” Parasitology International, vol. 61, no. 4, pp. 520–531, 2012. View at Publisher · View at Google Scholar
  30. A. Dutta and N. C. Sukul, “Filaricidal properties of a wild herb, Andrographis paniculata,” Journal of Helminthology, vol. 56, no. 2, pp. 81–84, 1982. View at Google Scholar · View at Scopus
  31. M. Z. Zaridah, S. Z. Idid, A. Wan Omar, and S. Khozirah, “In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi,” Journal of Ethnopharmacology, vol. 78, no. 1, pp. 79–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Ramanathan and R. Shanmugapriya, “Antifilarial activity of seed extracts of Ricinus communis against Brugia malayi,” Journal of Pharmacy Research, vol. 5, no. 3, pp. 1448–1450, 2012. View at Google Scholar
  33. M. Nisha, M. Kalyanasundaram, K. P. Paily, A. Abidha, P. Vanamail, and K. Balaraman, “In vitro screening of medicinal plant extracts for macrofilaricidal activity,” Parasitology Research, vol. 100, no. 3, pp. 575–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Satapathy, “Effect of Noni (Morinda citrifolia L.) on filarial worm infestation in vitro study,” Noni Clinical Research Journal, vol. 1, pp. 34–36, 2007. View at Google Scholar
  35. C. V. Chandrasekaran, P. Thiyagarajan, K. Sundarajan et al., “Evaluation of the genotoxic potential and acute oral toxicity of standardized extract of Andrographis paniculata (KalmCold),” Food and Chemical Toxicology, vol. 47, no. 8, pp. 1892–1902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Shivaprakash, H. Gopalakrishna, D. S. Padbidri, S. Sadanand, S. S. Sekhar, and R. N. Shetty, “Evaluation of Andrographis paniculata leaves extract for analgesic activity,” Journal of Pharmacy Research, vol. 4, pp. 3375–3377, 2011. View at Google Scholar
  37. S. W. Qader, M. A. Abdulla, L. S. Chua, N. Najim, M. M. Zain, and S. Hamdan, “Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants,” Molecules, vol. 16, no. 4, pp. 3433–3443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Murugan, K. Selvanayaki, and S. Al-Sohaibani, “Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate Pseudomonas aeruginosa,” World Journal of Microbiology and Biotechnology, vol. 27, no. 7, pp. 1661–1668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Q. Wasman, A. A. Mahmood, L. S. Chua, M. A. Alshawsh, and S. Hamdan, “Antioxidant and gastroprotective activities of Andrographis paniculata (Hempedu Bumi) in Sprague Dawley rats,” Indian Journal of Experimental Biology, vol. 49, no. 10, pp. 767–772, 2011. View at Google Scholar · View at Scopus
  40. F. H. Al-Bayaty, M. A. Abdulla, M. I. A. Hassan, and H. M. Ali, “Effect of Andrographis paniculata leaf extract on wound healing in rats,” Natural Product Research, vol. 26, no. 5, pp. 423–429, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. W. W. Chao and B. F. Lin, “Hepatoprotective diterpenoids isolated from Andrographis paniculata,” Chinese Medicine, vol. 3, pp. 136–143, 2012. View at Google Scholar
  42. R. Arunadevi, S. Sudhakar, and A. P. Lipton, “Assessment of antibacterial activity and detection of small molecules in different parts of Andrographis paniculata,” Journal of Theoretical and Experimental Biology, vol. 6, article 192, 2010. View at Google Scholar
  43. P. K. Singha, S. Roy, and S. Dey, “Antimicrobial activity of Andrographis paniculata,” Fitoterapia, vol. 74, no. 7-8, pp. 692–694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Ajaya Kumar, K. Sridevi, N. Vijaya Kumar, S. Nanduri, and S. Rajagopal, “Anticancer and immunostimulatory compounds from Andrographis paniculata,” Journal of Ethnopharmacology, vol. 92, no. 2-3, pp. 291–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Govindarajan, “Evaluation of Andrographis paniculata Burm.f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae),” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 3, pp. 176–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Elango, A. Abdul Rahuman, C. Kamaraj et al., “Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus,” Industrial Crops and Products, vol. 36, no. 1, pp. 524–530, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Shipard, King of Bitters (Andrographis paniculata), 2009, http://herbsarespecial.com.au/isabells_blog/isabells-articles/king-of-bitters.html.
  48. C. Kumarappan, S. Senthil, S. K. K. Sundari, and A. Jaswanth, “Anti-filarial activity of some valuable Indian medicinal plants,” Asian Journal of Experimental Sciences, vol. 23, pp. 553–558, 2009. View at Google Scholar
  49. L. Coello, M. J. Martín, and F. Reyes, “1,5-diazacyclohenicosane, a new cytotoxic metabolite from the marine sponge Mycale sp,” Marine Drugs, vol. 7, no. 3, pp. 445–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. K. V. Rao, M. S. Donia, J. Peng et al., “Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer's diseases,” Journal of Natural Products, vol. 69, no. 7, pp. 1034–1040, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Orhan, B. Şener, M. Kaiser, R. Brun, and D. Tasdemir, “Inhibitory activity of marine sponge-derived natural products against parasitic protozoa,” Marine Drugs, vol. 8, no. 1, pp. 47–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Lipton, “Antifungal and cytotoxic activities of some marine sponges collected from the south east coast of India,” Journal of Applied Pharmaceutical Science, vol. 2, pp. 52–55, 2012. View at Google Scholar
  53. I. Rajendran, K. Sobhana, G. Annie Selva Sonia, K. Chakraborty, K. Vijayan, and P. Vijayagopal, “Antibacterial and antifungal properties of southeast Indian coastal sponges,” Journal of the Marine Biological Association of India, vol. 53, pp. 272–274, 2011. View at Google Scholar
  54. R. Bairwa, R. Sodha, and B. Rajawat, “Trachyspermum ammi,” Pharmacognosy Reviews, vol. 6, article 56, 2012. View at Google Scholar
  55. W. Omar, A. J. Ibrahim, O. Sulaiman, and Y. Hashim, “Screening of local plants for antifilarial activity against adult worm and microfilaria of Brugia pahangi,” Journal of Tropical Forest Products, vol. 3, pp. 216–219, 1997. View at Google Scholar
  56. B. H. Ali, N. Al Wabel, and G. Blunden, “Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review,” Phytotherapy Research, vol. 19, no. 5, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Mohamed, J. Fernández, M. Pineda, and M. Aguilar, “Roselle (Hibiscus sabdariffa) seed oil is a rich source of γ-tocopherol,” Journal of Food Science, vol. 72, no. 3, pp. S207–S211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. EMEA, Committee for Veterinary Medicibnal Product Cardiospermum Halicacabum, The European Agency for the Evaluation of Medicinal Products, 1999, http://www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500011402.
  59. N. V. Rao, K. C. Prakash, and S. M. S. Kumar, “Pharmacological investigation of Cardiospermum halicacabum (Linn) in different animal models of diarrhoea,” Indian Journal of Pharmacology, vol. 38, no. 5, pp. 346–349, 2006. View at Google Scholar · View at Scopus
  60. H. shareef, G. H. Rizwani, S. Mahmood, R. Khursheed, and H. Zahid, “In vitro antimicrobial and biochemiccal analysis of Cardiospermum halicacabum L.,” Pakistan Journal of Botany, vol. 44, pp. 1677–1680, 2012. View at Google Scholar
  61. T. Deepan, V. Alekhya, P. Saravanakumar, and M. Dhanaraju, “Biochemical and anti-microbial studies on the leaves extracts of Cardiospermum halicacabum Linn,” Advances in Biological Research, vol. 6, pp. 14–18, 2012. View at Google Scholar
  62. W. Khunkitti, Y. Fujimaki, and Y. Aoki, “In vitro antifilarial activity of extracts of the medicinal plant Cardiospermum halicacabum against Brugia pahangi,” Journal of Helminthology, vol. 74, no. 3, pp. 241–246, 2000. View at Google Scholar · View at Scopus
  63. J.-H. Zou, J. Dai, X. Chen, and J.-Q. Yuan, “Pentacyclic triterpenoids from leaves of Excoecaria agallocha,” Chemical and Pharmaceutical Bulletin, vol. 54, no. 6, pp. 920–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Subhan, M. A. Alam, F. Ahmed, I. J. Shahid, L. Nahar, and S. D. Sarker, “Bioactivity of Excoecaria agallocha,” Brazilian Journal of Pharmacognosy, vol. 18, no. 4, pp. 521–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Vadlapudi, V. Bobbarala, S. Penumajji, and K. C. Naidu, “Excoecaria agallocha L. antimicrobial properties against important pathogenic microorganisms,” International Journal of PharmTech Research, vol. 1, no. 4, pp. 865–867, 2009. View at Google Scholar · View at Scopus
  66. J. K. Patra, A. D. Mohapatra, S. K. Rath, N. K. Dhal, and H. Thatoi, “Screening of antioxidant and antifilarial activity of leaf extracts of Excoecaria agallocha L,” International Journal of Integrative Biology, vol. 7, no. 1, pp. 9–15, 2009. View at Google Scholar · View at Scopus
  67. P. P. Phalak, The Real Gold, http://giftingtrees.blogspot.com/2010/10/real-gold.html.
  68. V. Borikar, C. R. J. D. S. Rekhe, and P. Philip, “Study of Analgesic activity of Bauhinia racemosa iam in rats,” Veterinary World, vol. 2, pp. 135–136, 2009. View at Google Scholar
  69. P. Kumar, S. Baraiya, S. Gaidhani, M. Gupta, and M. M. Wanjari, “Antidiabetic activity of stem bark of Bauhinia variegata in alloxan-induced hyperglycemic rats,” Journal of Pharmacology & Pharmacotherapeutics, vol. 3, no. 1, pp. 64–66, 2012. View at Google Scholar
  70. T. Kumar, A. Alexander, D. D. Ajazuddin, J. Khan, and M. Sharma, “Investigation of in vitro anthelmintic activity of Bauhinia racemosa Linn,” Journal of Applied Pharmaceutical Science, vol. 1, pp. 73–75, 2011. View at Google Scholar
  71. S. A. Nirmal, R. B. Laware, R. A. Rathi, V. V. Dhasade, and B. S. Kuchekar, “Antihistaminic effect of Bauhinia racemosa leaves,” Journal of Young Pharmacists, vol. 3, no. 2, pp. 129–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Kumar, L. Karthik, and K. V. B. Rao, “Biochemical composition and in vitro antimicrobial activity of Bauhinia racemosa Lamk (Caesalpiniaceae),” International Journal of Pharmaceutical Sciences and Research, vol. 1, pp. 51–58, 2010. View at Google Scholar
  73. K. V. Sashidhara, S. P. Singh, A. Srivastava, and A. Puri, “Main extracts and hypolipidemic effects of the Bauhinia racemosaLam. leaf extract in HFD-fed hamsters,” Natural Product Research, vol. 27, no. 12, pp. 1127–1131, 2013. View at Publisher · View at Google Scholar
  74. V. Borikar, C. Jangde, P. Philip, and D. Rekhe, “Study of antiulcer activity of Bauhinia racemosa Lam in rats,” Veterinary World, vol. 2, pp. 215–216, 2009. View at Google Scholar
  75. E. A. Adewusi and A. J. Afolayan, “A review of natural products with hepatoprotective activity,” Journal of Medicinal Plant Research, vol. 4, no. 13, pp. 1318–1334, 2010. View at Google Scholar · View at Scopus
  76. O. Obidoa, P. E. Joshua, and N. J. Eze, “Biochemical analysis of Cocos nucifera L,” Pharmacy Research, vol. 3, pp. 280–286, 2010. View at Google Scholar
  77. G. Kanchana and J. P. Dyana, “Preliminary biochemical screening of Cocos nucifera L. flowers,” International Journal of Current Pharmaceutical Research, vol. 4, pp. 62–63, 2012. View at Google Scholar
  78. M. L. Arruzazabala, V. Molina, R. Más et al., Journal of Pharmacy and Pharmacology, vol. 59, pp. 995–999, 2007.
  79. L. M. B. Oliveira, C. M. L. Bevilaqua, C. T. C. Costa et al., “Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes,” Veterinary Parasitology, vol. 159, no. 1, pp. 55–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Esquenazi, M. D. Wigg, M. M. F. S. Miranda et al., “Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract,” Research in Microbiology, vol. 153, no. 10, pp. 647–652, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. A. H. Al-Adhroey, Z. M. Nor, H. M. Al-Mekhlafi, A. A. Amran, and R. Mahmud, “Evaluation of the use of Cocos nucifera as antimalarial remedy in Malaysian folk medicine,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 988–991, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Singla, “Review on the pharmacological properties of Cocos Nucifera endocarp,” vol. 3, no. 5, Article ID WMC003413, 2012. View at Google Scholar
  83. P. U. Rani, T. Venkateshwaramma, and P. Devanand, “Bioactivities of Cocos nucifera L. (Arecales: Arecaceae) and Terminalia catappa L. (Myrtales: Combretaceae) leaf extracts as post-harvest grain protectants against four major stored product pests,” Journal of Pest Science, vol. 84, no. 2, pp. 235–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. S. M. Roopan, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. Surendra, “Low-cost and eco-friendly bio-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity,” Industrial Crops and Products, vol. 43, pp. 631–635, 2013. View at Publisher · View at Google Scholar
  85. S. Subarani, S. Sabhanayakam, and C. Kamaraj, “Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae),” Parasitology Research, vol. 112, no. 2, pp. 487–499, 2012. View at Publisher · View at Google Scholar
  86. K. Kovendan, K. Murugan, S. P. Shanthakumar, S. Vincent, and J. S. Hwang, “Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti,” Parasitology Research, vol. 111, no. 4, pp. 1481–1490, 2012. View at Google Scholar
  87. M. Govindarajan, A. Jebanesan, and T. Pushpanathan, “Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes,” Parasitology Research, vol. 102, no. 2, pp. 289–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Rajkumar and A. Jebanesan, “Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae),” Parasitology Research, vol. 104, no. 2, pp. 337–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Kovendan, K. Murugan, C. Panneerselvam et al., “Antimalarial activity of Carica papaya (Family: Caricaceae) leaf extract against Plasmodium falciparum,” Asian Pacific Journal of Tropical Disease, vol. 2, supplement 1, pp. S306–S311, 2012. View at Google Scholar
  90. K. Kovendan, K. Murugan, and S. Vincent, “Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae),” Parasitology Research, vol. 110, no. 2, pp. 571–581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Mahesh Kumar, K. Murugan, K. Kovendan et al., “Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti,” Parasitology Research, vol. 111, no. 2, pp. 609–618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. L. Lalrotluanga, L. Ngente, S. K. Nachimuthu, and G. Guruswami, “Insecticidal and repellent activity of Hiptage benghalensis L. Kruz (Malpighiaceae) against mosquito vectors,” Parasitology Research, vol. 111, no. 3, pp. 1007–1017, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Kovendan, S. Arivoli, R. Maheshwaran, K. Baskar, and S. Vincent, “Larvicidal efficacy of Sphaeranthus indicus,Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae),” Parasitology Research, vol. 111, no. 3, pp. 1025–1035, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. J. R. C. Vieira, R. M. P. Leite, I. R. Lima, D. D. A. F. Navarro, E. M. Bianco, and S. P. Leite, “Oviposition and embryotoxicity of Indigofera suffruticosa on early development of Aedes aegypti (Diptera: Culicidae),” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 741638, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus