Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 152487, 11 pages
http://dx.doi.org/10.1155/2014/152487
Research Article

Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat

1Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), Institut National de Sciences Appliquées et de Technologie (INSAT), BP 676, 1080 Tunis Cedex, Tunisia
2Laboratoire d’Epidémiologie et d’Ecologie des Parasites, Institut Pasteur de Tunis, BP 74, 1002 Tunis Belvédère, Tunisia
3Institut National Agronomique de Tunisie, 1002 Tunis, Tunisia
4Institut Supérieur des Etudes Technologiques de Zaghouan, 1121 Mograne, Tunisia

Received 24 November 2013; Accepted 10 January 2014; Published 25 February 2014

Academic Editor: Fabio Firenzuoli

Copyright © 2014 Nariman El Abed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. Alzoreky and K. Nakahara, “Antibacterial activity of extracts from some edible plants commonly consumed in Asia,” International Journal of Food Microbiology, vol. 80, no. 3, pp. 223–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Shan, Y.-Z. Cai, J. D. Brooks, and H. Corke, “The in vitro antibacterial activity of dietary spice and medicinal herb extracts,” International Journal of Food Microbiology, vol. 117, no. 1, pp. 112–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Viuda-Martos, M. A. Mohamadyb, J. Fernández-Lópeza et al., “In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants,” Food Control, vol. 22, pp. 1715–1722, 2011. View at Google Scholar
  4. G. C. Tenore, R. Ciampaglia, N. A. Arnold et al., “Antimicrobial and antioxidant properties of the essential oil of Salvia lanigera from Cyprus,” Food and Chemical Toxicology, vol. 49, no. 1, pp. 238–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Iverson, “Phenolic antioxidants: health protection branch studies on butylated hydroxyanisole,” Cancer Letters, vol. 93, no. 1, pp. 49–54, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. N. A. A. Mohd Nazri, N. Ahmat, A. Adnan, S. A. Syed Mohamad, and S. A. Syaripah Ruzaina, “In vitro antibacterial and radical scavenging activities of Malaysian table salad,” African Journal of Biotechnology, vol. 10, no. 30, pp. 5728–5735, 2011. View at Google Scholar · View at Scopus
  7. S. Rawdkuen, P. Suthiluk, D. Kamhangwong, and S. Benjakul, “Antimicrobial activity of some potential active compounds against food spoilage microorganisms,” African Journal of Biotechnology, vol. 11, pp. 13914–13921, 2012. View at Google Scholar
  8. J. D. Phillipson, “Phytochemistry and pharmacognosy,” Phytochemistry, vol. 68, no. 22–24, pp. 2960–2972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Bounatirou, S. Smiti, M. G. Miguel et al., “Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus,” Food Chemistry, vol. 105, no. 1, pp. 146–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Nejad Ebrahimi, J. Hadian, M. H. Mirjalili, A. Sonboli, and M. Yousefzadi, “Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages,” Food Chemistry, vol. 110, no. 4, pp. 927–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. C. Figueiredo, J. G. Barroso, L. G. Pedro, L. Salgueiro, M. G. Miguel, and M. L. Faleiro, “Portuguese thymbra and thymus species volatiles: chemical composition and biological activities,” Current Pharmaceutical Design, vol. 14, no. 29, pp. 3120–3140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Jamali, L. El Bouzidi, K. Bekkouche et al., “Chemical composition, antioxidant and anticandidal activities of essential oils from different wild Moroccan Thymus species,” Chemistry & Biodiversity, vol. 9, pp. 1188–1197, 2012. View at Google Scholar
  13. S. Burt, “Essential oils: their antibacterial properties and potential applications in foods—a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Djenane, J. Yangüela, L. Montañés, M. Djerbal, and P. Roncalés, “Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: efficacy and synergistic potential in minced beef,” Food Control, vol. 22, no. 7, pp. 1046–1053, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Hyldgaard, T. Mygind, and R. L. Meyer, “Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components,” Frontiers in Microbiology, vol. 25, pp. 1–24, 2012. View at Google Scholar
  16. V. K. Bajpai, A. Rahman, N. T. Dung, M. K. Huh, and S. C. Kang, “In vitro inhibition of food spoilage and foodborne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr,” Journal of Food Science, vol. 73, no. 6, pp. M314–M320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Bubonja-Sonje, J. Giacometti, and M. Abram, “Antioxidant and antilisterial activity of olive oil, cocoa and rosemary extract polyphenols,” Food Chemistry, vol. 127, no. 4, pp. 1821–1827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. McLauchlin, R. T. Mitchell, W. J. Smerdon, and K. Jewell, “Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods,” International Journal of Food Microbiology, vol. 92, no. 1, pp. 15–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Datta, “Listeria monocytogenes,” in International Handbook of Foodborne Pathogens, M. D. Miliotis and J. W. Bier, Eds., pp. 105–121, Marcel Dekker, New York, NY, USA, 2003. View at Google Scholar
  20. J. M. Farber and P. I. Peterkin, “Listeria monocytogenes, a food-borne pathogen,” Microbiological Reviews, vol. 55, no. 3, pp. 476–511, 1991. View at Google Scholar · View at Scopus
  21. D. Djenane, J. Yangüela, T. Amrouche, S. Boubrit, N. Boussad, and P. Roncalés, “Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus aureus in minced beef,” Food Science and Technology International, vol. 17, no. 6, pp. 505–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Ozkan, O. Sagdic, R. S. Gokturk, O. Unal, and S. Albayrak, “Study on chemical composition and biological activities of essential oil and extract from Salvia pisidica,” LWT—Food Science and Technology, vol. 43, no. 1, pp. 186–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. European Pharmacopoeia 6.0, “Determination of essential oils in herbal drugs,” 2.8.12, 2008.
  24. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured, Carol Stream, Ill, USA, 4th edition, 2007.
  25. D. Mantle, J. G. Anderton, G. Falkous, M. Barnes, P. Jones, and E. K. Perry, “Comparison of methods for determination of total antioxidant status: application to analysis of medicinal plant essential oils,” Comparative Biochemistry and Physiology B, vol. 121, no. 4, pp. 385–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Ruberto and M. T. Baratta, “Antioxidant activity of selected essential oil components in two lipid model systems,” Food Chemistry, vol. 69, no. 2, pp. 167–174, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT—Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Google Scholar · View at Scopus
  28. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. NCCLS (National Committee for Clinical Laboratory Standards), Performance Standards for Antimicrobial Susceptibility Testing, International Supplement. M100-S9, Wayne, Pa, USA, 9th edition, 1999.
  30. NCCLS (National Committee for Clinical Laboratory Standards), Performance Standards for Antimicrobial Disc Susceptibility Test, Approved Standard. M2-A6, Wayne, Pa, USA, 6th edition, 1997.
  31. M. Ó. Careaga, E. Fernández, L. Dorantes, L. Mota, M. E. Jaramillo, and H. Hernandez-Sanchez, “Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat,” International Journal of Food Microbiology, vol. 83, no. 3, pp. 331–335, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. J. Best and D. E. Roberts, “Algorithm AS 89: the upper tail probabilities of spearman's rho,” Journal of the Royal Statistical Society, vol. 24, pp. 377–379, 1975. View at Google Scholar
  33. J. M. Chambers, A. E. Freeny, and R. M. Heiberger, “Analysis of variance, designed experiments,” in Statistical Models in S, J. M. Chambers and T. J. Hastie, Eds., Wadsworth & Brooks/Cole, Pacific Grove, Calif, USA, 1992. View at Google Scholar
  34. E. M. Napoli, G. Curcuruto, and G. Ruberto, “Screening of the essential oil composition of wild Sicilian thyme,” Biochemical Systematics and Ecology, vol. 38, no. 4, pp. 816–822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Palmeira-De-Oliveira, C. Gaspar, R. Palmeira-De-Oliveira et al., “The anti-Candida activity of Thymbra capitata essential oil: effect upon pre-formed biofilm,” Journal of Ethnopharmacology, vol. 140, no. 2, pp. 379–383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. L. R. Salgueiro, E. Pinto, M. J. Gonçalves et al., “Chemical composition and antifungal activity of the essential oil of Thymbra capitata,” Planta Medica, vol. 70, no. 6, pp. 572–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Tomaino, F. Cimino, V. Zimbalatti et al., “Influence of heating on antioxidant activity and the chemical composition of some spice essential oils,” Food Chemistry, vol. 89, no. 4, pp. 549–554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Jaafari, H. A. Mouse, E. M. Rakib et al., “Chemical composition and antitumor activity of different wild varieties of Moroccan thyme,” Brazilian Journal of Pharmacognosy, vol. 17, no. 4, pp. 477–491, 2007. View at Google Scholar · View at Scopus
  39. R. S. Verma, R. K. Verma, A. Chauhan, and A. K. Yadav, “Seasonal variation in essential oil content and composition of Thyme, Thymus serpyllum l. Cultivated in Uttarakhand hills,” Indian Journal of Pharmaceutical Sciences, vol. 73, no. 2, pp. 233–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Li, X. Wang, Y. Li, P. Li, and H. Wang, “Polyphenolic compounds and antioxidant properties of selected China wines,” Food Chemistry, vol. 112, no. 2, pp. 454–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. I. Koleva, T. A. Van Beek, J. P. H. Linssen, A. De Groot, and L. N. Evstatieva, “Screening of plant extracts for antioxidant activity: a comparative study on three testing methods,” Phytochemical Analysis, vol. 13, no. 1, pp. 8–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Ozgen, R. N. Reese, A. Z. Tulio Jr., J. C. Scheerens, and A. R. Miller, “Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods,” Journal of Agricultural and Food Chemistry, vol. 54, no. 4, pp. 1151–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Patel-Rajesh and J. Patel-Natvar, “In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods,” Journal of Advanced Pharmaceutical Technology & Research, vol. 1, pp. 52–68, 2011. View at Google Scholar
  44. Y. Chen, M.-Y. Xie, S.-P. Nie, C. Li, and Y.-X. Wang, “Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum,” Food Chemistry, vol. 107, no. 1, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. O. O. Olajuyigbe and A. J. Afolayan, “Phytochemical assessment and antioxidant activities of alcoholic and aqueous extracts of acacia mearnsii de wild,” International Journal of Pharmacology, vol. 7, no. 8, pp. 856–861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Tepe, M. Sokmen, H. A. Akpulat, D. Daferera, M. Polissiou, and A. Sokmen, “Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans,” Journal of Food Engineering, vol. 66, no. 4, pp. 447–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Guimarães, M. J. Sousa, and I. C. F. R. Ferreira, “Contribution of essential oils and phenolics to the antioxidant properties of aromatic plants,” Industrial Crops and Products, vol. 32, no. 2, pp. 152–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Piccaglia, M. Marotti, E. Giovanelli, S. G. Deans, and E. Eaglesham, “Antibacterial and antioxidant properties of Mediterranean aromatic plants,” Industrial Crops and Products, vol. 2, no. 1, pp. 47–50, 1993. View at Google Scholar · View at Scopus
  49. M. Číž, H. Čížová, P. Denev, M. Kratchanova, A. Slavov, and A. Lojek, “Different methods for control and comparison of the antioxidant properties of vegetables,” Food Control, vol. 21, no. 4, pp. 518–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Ennajar, J. Bouajila, A. Lebrihi et al., “Chemical composition and antimicrobial and antioxidant activities of essential oils and various extracts of Juniperus phoenicea l. (Cupressacees),” Journal of Food Science, vol. 74, no. 7, pp. M364–M371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. A. Adedapo, F. O. Jimoh, A. J. Afolayan, and P. J. Masika, “Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera,” BMC Complementary and Alternative Medicine, vol. 8, article 54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Wang, J. Li, M. Rangarajan et al., “Antioxidative phenolic compounds from Sage (Salvia officinalis),” Journal of Agricultural and Food Chemistry, vol. 46, pp. 4869–4873, 1998. View at Google Scholar
  53. C. Busatta, A. J. Mossi, M. R. A. Rodrigues, R. L. Cansian, and J. V. De Oliveira, “Evaluation of Origanum vulgare essential oil as antimicrobial agent in sausage,” Brazilian Journal of Microbiology, vol. 38, no. 4, pp. 610–616, 2007. View at Google Scholar · View at Scopus
  54. C. F. Bagamboula, M. Uyttendaele, and J. Debevere, “Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri,” Food Microbiology, vol. 21, no. 1, pp. 33–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. M. Gupta, M. Arif, and Z. Ahmed, “Antimicrobial activity in leaf, seed extract and seed oil of Jatropha curcas L. plant,” Journal of Applied and Natural Science, vol. 3, pp. 102–105, 2011. View at Google Scholar
  56. S. D. Cox, C. M. Mann, J. L. Markham, J. E. Gustafson, J. R. Warmington, and S. G. Wyllie, “Determining the antimicrobial actions of tea tree oil,” Molecules, vol. 6, no. 2, pp. 87–91, 2001. View at Google Scholar · View at Scopus
  57. R. S. Farag, Z. Y. Daw, F. M. Hewedi, and G. S. A. El-Baroty, “Antimicrobial activity of some Egyptian spice essential oils,” Journal of Food Protection, vol. 52, pp. 665–667, 1989. View at Google Scholar
  58. S. G. Deans and K. P. Svoboda, “The antimicrobial properties of marjoram (Origanum majorana L.) volatile oil,” Flavour and Fragrance Journal, vol. 5, no. 3, pp. 187–190, 1990. View at Google Scholar · View at Scopus
  59. J. R. Knowles, S. Roller, D. B. Murray, and A. S. Naidu, “Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar typhimurium,” Applied and Environmental Microbiology, vol. 71, no. 2, pp. 797–803, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Ultee, E. P. W. Kets, and E. J. Smid, “Mechanisms of action of carvacrol on the food-borne pathogen,” Applied and Environmental Microbiology, vol. 65, no. 10, pp. 4606–4610, 1999. View at Google Scholar · View at Scopus
  61. C. F. Bagamboula, M. Uyttendaele, and J. Debevere, “Antimicrobial effect of spices and herbs on Shigella sonnei and S. flexneri,” Journal of Food Protection, vol. 66, no. 4, pp. 668–673, 2003. View at Google Scholar · View at Scopus
  62. M. Cristani, M. D'Arrigo, G. Mandalari et al., “Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity,” Journal of Agricultural and Food Chemistry, vol. 55, no. 15, pp. 6300–6308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Vardar-Ünlü, F. Candan, A. Sókmen et al., “Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae),” Journal of Agricultural and Food Chemistry, vol. 51, no. 1, pp. 63–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. J. M. Jay, “Microorganisms in fresh ground meats: the relative safety of products with low versus high numbers,” Meat Science, vol. 43, no. 1, pp. S59–S66, 1996. View at Google Scholar · View at Scopus
  65. L. A. Shelef, E. K. Jyothi, and M. A. Bulgarelli, “Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods,” Journal of Food Science, vol. 49, no. 3, pp. 737–740, 1984. View at Google Scholar · View at Scopus
  66. E. A. Hayouni, I. Chraief, M. Abedrabba et al., “Tunisian Salvia officinalis L. and Schinus molle L. essential oils: their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat,” International Journal of Food Microbiology, vol. 125, no. 3, pp. 242–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. B. Hsouna, M. Trigui, R. B. Mansour, R. M. Jarraya, M. Damak, and S. Jaoua, “Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat,” International Journal of Food Microbiology, vol. 148, no. 1, pp. 66–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. C. M. Antonio, H. Abriouel, R. L. López, N. B. Omar, E. Valdivia, and A. Gálvez, “Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad,” Food and Chemical Toxicology, vol. 47, no. 9, pp. 2216–2223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Aureli, A. Costantini, and S. Zolea, “Antimicrobial activity of some plant essential oils against Listeria monocytogenes,” Journal of Food Protection, vol. 55, pp. 344–348, 1992. View at Google Scholar