Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 195305, 11 pages
http://dx.doi.org/10.1155/2014/195305
Research Article

Wild Mushrooms in Nepal: Some Potential Candidates as Antioxidant and ACE-Inhibition Sources

1Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
2Department of Chemistry, Hue College of Sciences, Hue University, 77 Nguyen Hue, Hue, Vietnam
3Miyazaki Prefectural Wood Utilization Research Center, Miyazaki 885-0037, Japan
4International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
5Material Management Center, Kyushu University, Fukuoka 812-8581, Japan
6Plant Pathology Division, Nepal Agriculture Research Council, Khumaltar, Lalitpur, Nepal, P.O. Box. 3605, Kathmandu, Nepal
7Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8581, Japan
8254 Adhikari Niwas, Alka Basti, Lainchour, P.O. Box 21758, 29, Kathmandu, Nepal

Received 1 May 2013; Accepted 4 December 2013; Published 28 January 2014

Academic Editor: Yoshiji Ohta

Copyright © 2014 Tran Hai Bang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Manzi, L. Gambelli, S. Marconi, V. Vivanti, and L. Pizzoferrato, “Nutrients in edible mushrooms: an inter-species comparative study,” Food Chemistry, vol. 65, no. 4, pp. 477–482, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Barros, B. A. Venturini, P. Baptista, L. M. Estevinho, and I. C. F. R. Ferreira, “Chemical composition and biological properties of portuguese wild mushrooms: a comprehensive study,” Journal of Agricultural and Food Chemistry, vol. 56, no. 10, pp. 3856–3862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. P. Wasser, “Review of medicinal mushrooms advances: good news from old allies,” HerbalGram, vol. 56, pp. 28–33, 2002. View at Google Scholar
  4. U. Lindequist, T. H. J. Niedermeyer, and W.-D. Jülich, “The pharmacological potential of mushrooms,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 3, pp. 285–299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Rathee, D. Rathee, D. Rathee, V. Kumar, and P. Rathee, “Mushrooms as therapeutic agents,” Revista Brasileira de Farmacognosia, vol. 22, no. 2, pp. 459–474, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. FAO, “FAOSTAT,” 2012, http://faostat.fao.org/site/567/DesktopDefault.aspx#ancor.
  7. S. P. Wasser, “Current findings, future trends, and unsolved problems in studies of medicinal mushrooms,” Applied Microbiology and Biotechnology, vol. 89, no. 5, pp. 1323–1332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Poljšak and R. Dahmane, “Free radicals and extrinsic skin aging,” Dermatology Research and Practice, vol. 2012, Article ID 135206, 4 pages, 2012. View at Publisher · View at Google Scholar
  9. D. Giustarini, I. Dalle-Donne, D. Tsikas, and R. Rossi, “Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers,” Critical Reviews in Clinical Laboratory Sciences, vol. 46, no. 5-6, pp. 241–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Briones and R. M. Touyz, “Oxidative stress and hypertension: current concepts,” Current Hypertension Reports, vol. 12, no. 2, pp. 135–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. A. Jurkiewicz and G. R. Buettner, “EPR detection of free radicals in UV-irradiated skin: mouse versus human,” Photochemistry and Photobiology, vol. 64, no. 6, pp. 918–922, 1996. View at Google Scholar · View at Scopus
  12. H. Masaki, “Role of antioxidants in the skin: anti-aging effects,” Journal of Dermatological Science, vol. 58, no. 2, pp. 85–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. L. Narayanan, R. N. Saladi, and J. L. Fox, “Ultraviolet radiation and skin cancer,” International Journal of Dermatology, vol. 49, no. 9, pp. 978–986, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Graf, “Antioxidants and skin care: the essentials,” Plastic and Reconstructive Surgery, vol. 125, no. 1, pp. 378–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Nichols and S. K. Katiyar, “Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms,” Archives of Dermatological Research, vol. 302, no. 2, pp. 71–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Pallela, Y. Na-Young, and S.-K. Kim, “Anti-photoaging and photoprotective compounds derived from marine organisms,” Marine Drugs, vol. 8, no. 4, pp. 1189–1202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Chen, J. Y. Hu, and S. Q. Wang, “The role of antioxidants in photoprotection: a critical review,” Journal of the American Academy of Dermatology, vol. 67, no. 5, pp. 1013–1024, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. G. E. Callera, R. M. Touyz, S. A. Teixeira et al., “ETA receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension,” Hypertension, vol. 42, no. 4, pp. 811–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Touyz and A. M. Briones, “Reactive oxygen species and vascular biology: implications in human hypertension,” Hypertension Research, vol. 34, no. 1, pp. 5–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. R. Weseler, L. Geraets, H. J. J. Moonen et al., “Poly (ADP-ribose) polymerase-1-inhibiting flavonoids attenuate cytokine release in blood from male patients with chronic obstructive pulmonary disease or type 2 diabetes,” The Journal of Nutrition, vol. 139, no. 5, pp. 952–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Schewe, Y. Steffen, and H. Sies, “How do dietary flavanols improve vascular function? A position paper,” Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 102–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Initiative Team Member Glenn Cardwell APD, “Mushrooms & Health 2010: antioxidant properties,” 2010.
  23. A. Morigiwa, K. Kitabatake, Y. Fujimoto, and N. Ikekawa, “Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum,” Chemical and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 3025–3028, 1986. View at Google Scholar · View at Scopus
  24. H.-G. Byun and S.-K. Kim, “Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin,” Process Biochemistry, vol. 36, no. 12, pp. 1155–1162, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Watanabe, T. Yamada, H. Tanaka et al., “Antihypertensive effect of γ-aminobutyric acid-enriched Agaricus blazei on spontaneously hypertensive rats,” Nippon Shokuhin Kagaku Kogaku Kaishi, vol. 49, no. 3, pp. 166–173, 2002. View at Google Scholar · View at Scopus
  26. D. H. Lee, J. H. Kim, J. S. Park, Y. J. Choi, and J. S. Lee, “Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum,” Peptides, vol. 25, no. 4, pp. 621–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Kokean, T. Nishii, H. Sakakura, and Y. Furuichi, “Effect of frying with edible oil on antihypertensive properties of Hatakeshimeji (Lyophyllum decastes Sing.) mushroom,” Food Science and Technology Research, vol. 11, no. 3, pp. 339–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-Y. Hagiwara, M. Takahashi, Y. Shen et al., “A phytochemical in the edible Tamogi-take mushroom (Pleurotus cornucopiae), D-mannitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats,” Bioscience, Biotechnology and Biochemistry, vol. 69, no. 8, pp. 1603–1605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Watanabe, A. Kawashita, S. Ishi et al., “Antihypertensive effect of γ-aminobutyric acid-enriched Agaricus blazei on mild hypertensive human subjects,” Nippon Shokuhin Kagaku Kogaku Kaishi, vol. 50, no. 4, pp. 167–173, 2003. View at Google Scholar · View at Scopus
  30. O. R. Vetaas and J.-A. Grytnes, “Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal,” Global Ecology and Biogeography, vol. 11, no. 4, pp. 291–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. K. Adhikari, S. Devkota, and R. D. Tiwari, “Ethnomycolgical knowledge on uses of wild mushrooms in Western and Central Nepal,” Our Nature, vol. 3, no. 1, pp. 13–19, 2006. View at Google Scholar
  32. L. K. Weresub, “Studies of Canadian Thelephoraceae. X.some species of Peniophora, section Tubuliferae,” Canadian Journal of Botany, vol. 31, no. 6, pp. 760–778, 1953. View at Publisher · View at Google Scholar
  33. M. Gardes and T. D. Bruns, “ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts,” Molecular Ecology, vol. 2, no. 2, pp. 113–118, 1993. View at Google Scholar · View at Scopus
  34. T. White, T. Bruns, S. Lee, and J. Taylor, “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, M. Innis, D. Gelfand, J. Shinsky, and T. White, Eds., pp. 315–322, Academic Press, San Diego, Calif, USA, 1990. View at Google Scholar
  35. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. V. L. Singleton and A. Joseph Rossi Jr., “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents,” The American Journal of Enology and Viticulture, vol. 16, no. 3, pp. 144–158, 1965. View at Google Scholar
  37. K. M. Gillespie, Genomic and Biochemical Investigation of Soybean Antioxidant Metabolism in Response to Growth at Elevated Carbon Dioxide and Elevated Ozone, University of Illinois at Urbana-Champaign, Urbana, Ill, USA, 2010.
  38. B. Ou, M. Hampsch-Woodill, and R. L. Prior, “Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe,” Journal of Agricultural and Food Chemistry, vol. 49, no. 10, pp. 4619–4626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. R. L. Prior, H. Hoang, L. Gu et al., “Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples,” Journal of Agricultural and Food Chemistry, vol. 51, no. 11, pp. 3273–3279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT—Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Google Scholar · View at Scopus
  41. S. Dudonné, X. Vitrac, P. Coutière, M. Woillez, and J.-M. Mérillon, “Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1768–1774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. L. H. Lam, T. Shimamura, S. Manabe, M. Ishiyama, and H. Ukeda, “Assay of angiotensin I-converting enzyme-inhibiting activity based on the detection of 3-hydroxybutyrate with water-soluble tetrazolium salt,” Analytical Sciences, vol. 24, no. 8, pp. 1057–1060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Huang, O. U. Boxin, and R. L. Prior, “The chemistry behind antioxidant capacity assays,” Journal of Agricultural and Food Chemistry, vol. 53, no. 6, pp. 1841–1856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Karadag, B. Ozcelik, and S. Saner, “Review of methods to determine antioxidant capacities,” Food Analytical Methods, vol. 2, no. 1, pp. 41–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Mantegna, A. Binello, L. Boffa, M. Giorgis, C. Cena, and G. Cravotto, “A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum,” Food Chemistry, vol. 130, no. 3, pp. 746–750, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Speisky, C. L. López-Alarcón, M. G. Gómez, J. Fuentes, and C. Sandoval-Acuña, “First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the South Andes region of South America,” Journal of Agricultural and Food Chemistry, vol. 60, no. 36, pp. 8851–8859, 2012. View at Google Scholar
  48. M. Yoshimura, Y. Amakura, and T. Yoshida, “Polyphenolic compounds in clove and pimento and their antioxidative activities,” Bioscience, Biotechnology and Biochemistry, vol. 75, no. 11, pp. 2207–2212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. L.-F. Zan, J.-C. Qin, Y.-M. Zhang, Y.-H. Yao, H.-Y. Bao, and X. Li, “Antioxidant hispidin derivatives from medicinal mushroom Inonotus hispidus,” Chemical and Pharmaceutical Bulletin, vol. 59, no. 6, pp. 770–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Cui, D.-S. Kim, and K.-C. Park, “Antioxidant effect of Inonotus obliquus,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 79–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. I.-K. Lee, Y.-S. Kim, Y.-W. Jang, J.-Y. Jung, and B.-S. Yun, “New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 24, pp. 6678–6681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Decker, “Phenolics: prooxidants or antioxidants?” Nutrition Reviews, vol. 55, no. 11, pp. 396–398, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. J. D. Everette, Q. M. Bryant, A. M. Green, Y. A. Abbey, G. W. Wangila, and R. B. Walker, “Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent,” Journal of Agricultural and Food Chemistry, vol. 58, no. 14, pp. 8139–8144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Shan, Y. Z. Cai, M. Sun, and H. Corke, “Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents,” Journal of Agricultural and Food Chemistry, vol. 53, no. 20, pp. 7749–7759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Song, C. M. Derito, M. K. Liu, X. He, M. Dong, and R. H. Liu, “Cellular antioxidant activity of common vegetables,” Journal of Agricultural and Food Chemistry, vol. 58, no. 11, pp. 6621–6629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Kalač, “A review of chemical composition and nutritional value of wild growing and cultivated mushrooms,” Journal of the Science of Food and Agriculture, vol. 93, no. 2, pp. 209–218, 2012. View at Publisher · View at Google Scholar
  57. I.-K. Lee and B.-S. Yun, “Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms Inonotus and Phellinus,” Bioorganic and Medicinal Chemistry, vol. 15, no. 10, pp. 3309–3314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M.-Y. Shon, T.-H. Kim, and N.-J. Sung, “Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts,” Food Chemistry, vol. 82, no. 4, pp. 593–597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. H.-Y. Chang, Y.-L. Ho, M.-J. Sheu et al., “Antioxidant and free radical scavenging activities of Phellinus merrillii extracts,” Botanical Studies, vol. 48, no. 4, pp. 407–417, 2007. View at Google Scholar · View at Scopus
  60. J.-Y. Jung, I.-K. Lee, S.-J. Seok, H.-J. Lee, Y.-H. Kim, and B.-S. Yun, “Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus,” Journal of Applied Microbiology, vol. 104, no. 6, pp. 1824–1832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. T. A. Ajith and K. K. Janardhanan, “Indian medicinal mushrooms as a source of antioxidant and antitumor agents,” Journal of Clinical Biochemistry and Nutrition, vol. 40, no. 3, pp. 157–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. G. J. Fisher, S. Kang, J. Varani et al., “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology, vol. 138, no. 11, pp. 1462–1470, 2002. View at Google Scholar · View at Scopus
  63. M. Sárdy, “Role of matrix metalloproteinases in skin ageing,” Connective Tissue Research, vol. 50, no. 2, pp. 132–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Park and J.-H. Lee, “Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway,” Oncology Reports, vol. 19, no. 2, pp. 413–417, 2008. View at Google Scholar · View at Scopus
  65. N. J. Sullivan, K. L. Tober, E. M. Burns et al., “UV light B-mediated inhibition of skin catalase activity promotes Gr-1+ CD11b+ myeloid cell expansion,” The Journal of Investigative Dermatology, vol. 132, no. 3, pp. 695–702, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Spanier, H. Xu, N. Xia et al., “Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4),” Journal of Physiology and Pharmacology, vol. 60, no. 11, supplement 4, pp. 111–116, 2009. View at Google Scholar · View at Scopus
  67. Y. Zheng, Y. Liu, J. Ge et al., “Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression,” Molecular Vision, vol. 16, pp. 1467–1474, 2010. View at Google Scholar · View at Scopus
  68. I. Wijesekara and S.-K. Kim, “Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry,” Marine Drugs, vol. 8, no. 4, pp. 1080–1093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Nakamura, N. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki, and T. Takano, “Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk,” Journal of Dairy Science, vol. 78, no. 4, pp. 777–783, 1995. View at Google Scholar · View at Scopus
  70. R. J. Fitzgerald and H. Meisel, “Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme,” The British Journal of Nutrition, vol. 84, supplement 1, pp. S33–S37, 2000. View at Google Scholar · View at Scopus
  71. T. Tavares, M. D. M. Contreras, M. Amorim, M. Pintado, I. Recio, and F. X. Malcata, “Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes,” Peptides, vol. 32, no. 5, pp. 1013–1019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Mizuno, K. Matsuura, T. Gotou et al., “Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension,” The British Journal of Nutrition, vol. 94, no. 1, pp. 84–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. Y.-M. Lee, T. Skurk, M. Hennig, and H. Hauner, “Effect of a milk drink supplemented with whey peptides on blood pressure in patients with mild hypertension,” European Journal of Nutrition, vol. 46, no. 1, pp. 21–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Boelsma and J. Kloek, “IPP-rich milk protein hydrolysate lowers blood pressure in subjects with stage 1 hypertension, a randomized controlled trial,” Nutrition Journal, vol. 9, article 52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. H. S. Choi, H. Y. Cho, H. C. Yang, K. S. Ra, and H. J. Suh, “Angiotensin I-converting enzyme inhibitor from Grifola frondosa,” Food Research International, vol. 34, no. 2-3, pp. 177–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Izawa and Y. Aoyagi, “Inhibition of angiotensin converting enzyme by mushroom,” Nippon Shokuhin Kagaku Kogaku Kaishi, vol. 53, no. 9, pp. 459–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Abdullah, S. M. Ismail, N. Aminudin, A. S. Shuib, and B. F. Lau, “Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 464238, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. L. G. Ranilla, Y.-I. Kwon, E. Apostolidis, and K. Shetty, “Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America,” Bioresource Technology, vol. 101, no. 12, pp. 4676–4689, 2010. View at Publisher · View at Google Scholar · View at Scopus