Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014 (2014), Article ID 253875, 9 pages
http://dx.doi.org/10.1155/2014/253875
Research Article

Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study

1National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
2Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA
3Department of Pharmaceutics, School of Pharmacy, University of Mississippi, University, MS 38677, USA

Received 25 October 2013; Revised 5 February 2014; Accepted 6 February 2014; Published 23 March 2014

Academic Editor: Yoshiji Ohta

Copyright © 2014 Suman Chandra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Barlow, “Toxicological aspects of antioxidants used as food additives,” in Food Antioxidants, B. J. F. Hudson, Ed., pp. 253–307, Elsevier, Amsterdam, The Netherlands, 1990. View at Google Scholar
  2. M. Namiki, “Antioxidants/antimutagens in food,” Critical Reviews in Food Science and Nutrition, vol. 29, no. 4, pp. 273–300, 1990. View at Google Scholar · View at Scopus
  3. K. Ramalakshmi, I. R. Kubra, and L. J. M. Rao, “Antioxidant potential of low-grade coffee beans,” Food Research International, vol. 41, no. 1, pp. 96–103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. R. Frydoonfar, D. R. McGrath, and A. D. Spigelman, “The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin,” Colorectal Disease, vol. 5, no. 2, pp. 149–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Hakimuddin, G. Paliyath, and K. Meckling, “Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells,” Breast Cancer Research and Treatment, vol. 85, no. 1, pp. 65–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. Joshipura, F. B. Hu, J. E. Manson et al., “The effect of fruit and vegetable intake on risk for coronary heart disease,” Annals of Internal Medicine, vol. 134, no. 12, pp. 1106–1114, 2001. View at Google Scholar · View at Scopus
  7. S. S. Khanzode, M. G. Muddeshwar, S. D. Khanzode, and G. N. Dakhale, “Antioxidant enzymes and lipid peroxidation in different stages of breast cancer,” Free Radical Research, vol. 38, no. 1, pp. 81–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Larsson, L. Holmberg, and A. Wolk, “Fruit and vegetable consumption in relation to ovarian cancer incidence: the Swedish mammography cohort,” The British Journal of Cancer, vol. 90, no. 11, pp. 2167–2170, 2004. View at Google Scholar · View at Scopus
  9. Y. Liu, T. Sobue, T. Otani, and S. Tsugane, “Vegetables, fruit consumption and risk of lung cancer among middle-aged Japanese men and women: JPHC study,” Cancer Causes and Control, vol. 15, no. 4, pp. 349–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. McCullough, A. S. Robertson, A. Chao et al., “A prospective study of whole grains, fruits, vegetables and colon cancer risk,” Cancer Causes and Control, vol. 14, no. 10, pp. 959–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Polidori, “Antioxidant micronutrients in the prevention of age-related diseases,” Journal of Postgraduate Medicine, vol. 49, no. 3, pp. 229–235, 2003. View at Google Scholar · View at Scopus
  12. K. S. Reddy and M. B. Katan, “Diet, nutrition and the prevention of hypertension and cardiovascular diseases,” Public Health Nutrition, vol. 7, no. 1, pp. 167–186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Vokó, M. Hollander, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Dietary antioxidants and the risk of ischemic stroke: the Rotterdam study,” Neurology, vol. 61, no. 9, pp. 1273–1275, 2003. View at Google Scholar · View at Scopus
  14. K. A. Steinmetz and J. D. Potter, “Vegetables, fruit, and cancer prevention: a review,” Journal of the American Dietetic Association, vol. 96, no. 10, pp. 1027–1039, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Scalbert and G. Williamson, “Dietary intake and bioavailability of polyphenols,” Journal of Nutrition, vol. 130, no. 8, pp. 2073–2085, 2000. View at Google Scholar · View at Scopus
  16. W. C. Willett, “Balancing life-style and genomics research for disease prevention,” Science, vol. 296, no. 5568, pp. 695–698, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Bourgaud, A. Gravot, S. Milesi, and E. Gontier, “Production of plant secondary metabolites: a historical perspective,” Plant Science, vol. 161, no. 5, pp. 839–851, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Pardossi, F. Malorgio, L. Incrocci, and F. Tognoni, “Hydroponic technologies for greenhouse crops,” in Crops: Quality, Growth and Biotechnology, R. Dris, Ed., pp. 360–378, WFL Publisher, Helsinki, Finland, 2006. View at Google Scholar
  19. K. Claudia, M. Rita, and P. Alberto, “Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum besilicum L.) grown in hydroponic culture,” Australian Journal of Crop Science, vol. 7, no. 3, pp. 321–327, 2013. View at Google Scholar
  20. V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents,” The American Journal of Enology and Viticulture, vol. 16, pp. 144–158, 1965. View at Google Scholar
  21. D. Marinova, F. Ribarova, and M. Atanassova, “Total phenolic and total flavonoids in Bulgarian fruits and vegetables,” Journal of the University of Chemical Technology and Metallurgy, vol. 40, no. 3, pp. 255–260, 2005. View at Google Scholar
  22. C. Chang, M. Yang, H. Wen, and J. Chern, “Estimation of total flavonoid content in propolis by two complementary colometric methods,” Journal of Food and Drug Analysis, vol. 10, no. 3, pp. 178–182, 2002. View at Google Scholar · View at Scopus
  23. F. Pourmorad, S. J. Hosseinimehr, and N. Shahabimajd, “Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants,” African Journal of Biotechnology, vol. 5, no. 11, pp. 1142–1145, 2006. View at Google Scholar · View at Scopus
  24. G. Miliauskas, P. R. Venskutonis, and T. A. van Beek, “Screening of radical scavenging activity of some medicinal and aromatic plant extracts,” Food Chemistry, vol. 85, no. 2, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Cheng, J. Moore, and L. Yu, “High-throughput relative DPPH radical scavenging capacity assay,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7429–7436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. L. Wolfe and H. L. Rui, “Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements,” Journal of Agricultural and Food Chemistry, vol. 55, no. 22, pp. 8896–8907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R-Development-Core-Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2005.
  28. B. N. Ames, M. K. Shigenaga, and T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 7915–7922, 1993. View at Google Scholar · View at Scopus
  29. G. Block, B. Patterson, and A. Subar, “Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence,” Nutrition and Cancer, vol. 18, no. 1, pp. 1–29, 1992. View at Google Scholar · View at Scopus
  30. J. A. Vinson, J. Jang, Y. A. Dabbagh, M. M. Serry, and S. Cai, “Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease,” Journal of Agricultural and Food Chemistry, vol. 43, no. 11, pp. 2798–2799, 1995. View at Google Scholar · View at Scopus
  31. G. Paganga, N. Miller, and C. A. Rice-Evans, “The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute?” Free Radical Research, vol. 30, no. 2, pp. 153–162, 1999. View at Google Scholar · View at Scopus
  32. M. P. Kähkönen, A. I. Hopia, H. J. Vuorela et al., “Antioxidant activity of plant extracts containing phenolic compounds,” Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 3954–3962, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. C. A. Rice-Evans, N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridham, “The relative antioxidant activities of plant-derived polyphenolic flavonoids,” Free Radical Research, vol. 22, no. 4, pp. 375–383, 1995. View at Google Scholar · View at Scopus
  34. N. Sugihara, T. Arakawa, M. Ohnishi, and K. Furuno, “Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid,” Free Radical Biology and Medicine, vol. 27, no. 11-12, pp. 1313–1323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Structure-antioxidant activity relationships of flavonoids and phenolic acids,” Free Radical Biology and Medicine, vol. 20, no. 7, pp. 933–956, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Ramarathnam, H. Ochi, and M. Takeuchi, “Antioxidant defense system in vegetable extracts,” in Natural Antioxidants, Chemistry, Health Effects and Applications, F. Shahidi, Ed., pp. 76–87, AOCS Press, Champaign, Ill, USA, 1997. View at Google Scholar
  37. H. Tapiero, K. D. Tew, G. N. Ba, and G. Mathé, “Polyphenols: do they play a role in the prevention of human pathologies?” Biomedicine and Pharmacotherapy, vol. 56, no. 4, pp. 200–207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Laughton, P. J. Evans, M. A. Moroney, J. R. S. Hoult, and B. Halliwell, “Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability,” Biochemical Pharmacology, vol. 42, no. 9, pp. 1673–1681, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Cos, L. Ying, M. Calomme et al., “Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers,” Journal of Natural Products, vol. 61, no. 1, pp. 71–76, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Wojdyło, J. Oszmiański, and R. Czemerys, “Antioxidant activity and phenolic compounds in 32 selected herbs,” Food Chemistry, vol. 105, no. 3, pp. 940–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. H. Miller, G. K. Walker, M. Tollenaar, and K. G. Alexander, “Growth and yield of maize (Zea mays L.) grown outdoors hydroponically and in soil,” Canadian Journal of Soil Science, vol. 69, no. 2, pp. 295–302, 1989. View at Publisher · View at Google Scholar
  42. C. Sgherri, S. Cecconami, C. Pinzino, F. Navari-Izzo, and R. Izzo, “Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil,” Food Chemistry, vol. 123, no. 2, pp. 416–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Deepa, C. Kaur, B. Singh, and H. C. Kapoor, “Antioxidant activity in some red sweet pepper cultivars,” Journal of Food Composition and Analysis, vol. 19, no. 6-7, pp. 572–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. U. Imeh and S. Khokhar, “Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations,” Journal of Agricultural and Food Chemistry, vol. 50, no. 22, pp. 6301–6306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Ou, D. Huang, M. Hampsch-Woodill, J. A. Flanagan, and E. K. Deemer, “Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study,” Journal of Agricultural and Food Chemistry, vol. 50, no. 11, pp. 3122–3128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Rawat, I. D. Bhatt, and R. S. Rawal, “Total phenolic compounds and antioxidant potential of Hedychium spicatum Buch. Ham. ex D. Don in west Himalaya, India,” Journal of Food Composition and Analysis, vol. 24, no. 4-5, pp. 574–579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. S. A. Adesegun, A. Fajana, C. I. Orabueze, and H. A. B. Coker, “Evaluation of antioxidant properties of Phaulopsis fascisepala C.B.Cl. (Acanthaceae),” Evidence-Based Complementary and Alternative Medicine, vol. 6, no. 2, pp. 227–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. R. Husain, J. Cillard, and P. Cillard, “Hydroxyl radical scavenging activity of flavonoids,” Phytochemistry, vol. 26, no. 9, pp. 2489–2491, 1987. View at Google Scholar · View at Scopus
  49. I. B. Afanas'ev, A. I. Dorozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch, “Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation,” Biochemical Pharmacology, vol. 38, no. 11, pp. 1763–1769, 1989. View at Google Scholar · View at Scopus
  50. J. Torel, J. Cillard, and P. Cillard, “Antioxidant activity of flavonoids and reactivity with peroxy radical,” Phytochemistry, vol. 25, no. 2, pp. 383–385, 1986. View at Google Scholar · View at Scopus
  51. Y. Yao, W. Sang, M. Zhou, and G. Ren, “Phenolic composition and antioxidant activities of 11 celery cultivars,” Journal of Food Science, vol. 75, no. 1, pp. C9–C13, 2010. View at Publisher · View at Google Scholar · View at Scopus