Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014 (2014), Article ID 270930, 10 pages
Research Article

Curcumin Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm by Inhibition of Inflammatory Response and ERK Signaling Pathways

1Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
2The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
3Department of Pathophysiology, Fenyang College Shanxi Medical University, Fenyang, Shanxi 032200, China
4Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China

Received 6 August 2014; Revised 12 October 2014; Accepted 13 October 2014; Published 6 November 2014

Academic Editor: Mohamed Eddouks

Copyright © 2014 QingQing Hao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background and Objectives. Curcumin has long been used to treat age-related diseases, such as atherosclerosis and coronary heart disease. In this study, we explored the effects of curcumin on the development of abdominal aortic aneurysm (AAA). Methods. ApoE−/− mice were randomly divided into 3 groups: AngII group, AngII + curcumin (AngII + Cur) group (100 mg/kg/d), and the control group. Miniosmotic pumps were implanted subcutaneously in ApoE−/− mice to deliver AngII for 28 days. After 4-week treatment, abdominal aortas with AAA were obtained for H&E staining, immunohistochemistry, and Western blotting. Results. The results showed that curcumin treatment significantly decreased the occurrence of AAA. The levels of macrophage infiltration, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factors-α (TNF-α) were significantly lower in AngII + Cur group than those in AngII group (all ). The level of superoxide dismutase (SOD) was significantly higher in AngII + Cur group than those in AngII group . The ERK1/2 phosphorylation in AngII + Cur group was significantly lower than that in AngII group . Conclusions. These results suggested that curcumin can inhibit the AngII-induced AAA in ApoE−/− mice, whose mechanisms include the curcumin anti-inflammation, antioxidative stress, and downregulation of ERK signaling pathway.