Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 378280, 9 pages
http://dx.doi.org/10.1155/2014/378280
Research Article

Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans

1Federal Institute of Education, Science, and Technology of Paraíba (IFPB), 58780-000 Itaporanga, PB, Brazil
2Mycology Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970 João Pessoa, PB, Brazil

Received 23 May 2014; Revised 16 July 2014; Accepted 5 August 2014; Published 28 August 2014

Academic Editor: Didier Stien

Copyright © 2014 Maria Clerya Alvino Leite et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Biswas, P. van Dijck, and A. Datta, “Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans,” Microbiology and Molecular Biology Reviews, vol. 71, no. 2, pp. 348–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Zhang, H. Chen, J. Niu, Y. Wang, and L. Xie, “Role of adaptive immunity in the pathogenesis of Candida albicans keratitis,” Investigative Ophthalmology and Visual Science, vol. 50, no. 6, pp. 2653–2659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. A. Monge, E. Román, C. Nombela, and J. Pla, “The MAP kinase signal transduction network in Candida albicans,” Microbiology, vol. 152, no. 4, pp. 905–912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Richardson and C. Lass-Flörl, “Changing epidemiology of systemic fungal infections,” Clinical Microbiology and Infection, vol. 14, no. 4, pp. 5–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar, “Biological effects of essential oils—a review,” Food and Chemical Toxicology, vol. 46, no. 2, pp. 446–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Friedman, P. R. Henika, C. E. Levin, and R. E. Mandrell, “Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice,” Journal of Agricultural and Food Chemistry, vol. 52, no. 19, pp. 6042–6048, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Lewinsohn, N. Dudai, Y. Tadmor et al., “Histochemical localization of citral accumulation in lemongrass leaves (Cymbopogon citratus (DC.) Stapf., Poaceae),” Annals of Botany, vol. 81, no. 1, pp. 35–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Rodov, S. Ben-Yehoshua, F. de Qiu, J. J. Kim, and R. Ashkenazi, “Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance,” Journal of Agricultural and Food Chemistry, vol. 43, no. 4, pp. 1057–1061, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. N. G. Tzortzakis and C. D. Economakis, “Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens,” Innovative Food Science and Emerging Technologies, vol. 8, no. 2, pp. 253–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Wuryatmo, A. Klieber, and E. S. Scott, “Inhibition of citrus postharvest pathogens by vapor of citral and related compounds in culture,” Journal of Agricultural and Food Chemistry, vol. 51, no. 9, pp. 2637–2640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. F. A. Dawson, “The amazing terpenes,” Naval Stores Review, vol. 104, pp. 6–12, 1994. View at Google Scholar
  12. A. M. Marques, C. H. P. Lima, D. S. Alviano, C. S. Alviano, R. L. Esteves, and M. A. C. Kaplan, “Traditional use, chemical composition and antimicrobial activity of Pectis brevipedunculata essential oil: a correlated lemongrass species in Brazil,” Emirates Journal of Food and Agriculture, vol. 25, pp. 798–808, 2013. View at Google Scholar
  13. N. Belletti, M. Ndagijimana, C. Sisto, M. E. Guerzoni, R. Lanciotti, and F. Gardini, “Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae,” Journal of Agricultural and Food Chemistry, vol. 52, pp. 6932–6938, 2004. View at Google Scholar
  14. N. Belletti, S. S. Kamdem, F. Patrignani, R. Lanciotti, A. Covelli, and F. Gardini, “Antimicrobial activity of aroma compounds against Saccharomyces cerevisiae and improvement of microbiological stability of soft drinks as assessed by logistic regression,” Applied and Environmental Microbiology, vol. 73, no. 17, pp. 5580–5586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Belletti, R. Lanciotti, F. Patrignani, and F. Gardini, “Antimicrobial efficacy of citron essential oil on spoilage and pathogenic microorganisms in fruit-based salads,” Journal of Food Science, vol. 73, no. 7, pp. M331–M338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Belletti, S. S. Kamdem, G. Tabanelli, R. Lanciotti, and F. Gardini, “Modeling of combined effects of citral, linalool and β-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment,” International Journal of Food Microbiology, vol. 136, no. 3, pp. 283–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ben-Yehoshua, V. Rodov, J. J. Kim, and S. Carmeli, “Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments,” Journal of Agricultural and Food Chemistry, vol. 40, no. 7, pp. 1217–1221, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. D. R. L. Caccioni, M. Guizzardi, D. M. Biondi, A. Renda, and G. Ruberto, “Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum,” International Journal of Food Microbiology, vol. 43, no. 1-2, pp. 73–79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Droby, A. Eick, D. Macarisin et al., “Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum,” Postharvest Biology and Technology, vol. 49, no. 3, pp. 386–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Rivera-Carriles, A. Argaiz, E. Palou, and A. López-Malo, “Synergistic inhibitory effect of citral with selected phenolics against Zygosaccharomyces bailii,” Journal of Food Protection, vol. 68, pp. 602–606, 2005. View at Google Scholar
  21. H. Zhou, N. Tao, and L. Jia, “Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii,” Food Control, vol. 37, pp. 277–283, 2014. View at Google Scholar
  22. N. Tao, Q. OuYang, and L. Jia, “Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism,” Food Control, vol. 41, pp. 116–121, 2014. View at Google Scholar
  23. C. D. B. da Silva, S. S. Guterres, V. Weisheimer, and E. E. S. Schapoval, “Antifungal activity of the lemongrass oil and citral against Candida spp,” Brazilian Journal of Infectious Diseases, vol. 12, no. 1, pp. 63–66, 2008. View at Google Scholar · View at Scopus
  24. G. B. Zore, A. D. Thakre, S. Jadhav, and S. M. Karuppayil, “Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle,” Phytomedicine, vol. 18, no. 13, pp. 1181–1190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Cleeland and E. Squires, “Evalution of new antimicrobials in vitro and in experimental animal infections,” in Antibiotics in Laboratory Medicine, V. Lorian, Ed., pp. 739–786, Lippincott Williams & Wilkins, Baltimore, Md, USA, 3rd edition, 1991. View at Google Scholar
  26. F. Hadacek and H. Greger, “Testing of antifungal natural products: methodologies, comparability of results and assay choice,” Phytochemical Analysis, vol. 11, pp. 137–147, 2000. View at Google Scholar
  27. Clinical and Laboratory Standards Institute, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, CLSI Document M27-A2, CLSI, Philadelphia, Pa, USA, 2nd edition, 2002.
  28. G. Morales, A. Paredes, P. Sierra, and L. A. Loyola, “Antimicrobial activity of three baccharis species used in the traditional medicine of Northern Chile,” Molecules, vol. 13, no. 4, pp. 790–794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. E. Ernst, M. E. Klepser, E. J. Wolfe, and M. A. Pfaller, “Antifungal dynamics of LY 303366, an investigational echinocandin B analog, against Candida ssp.,” Diagnostic Microbiology and Infectious Disease, vol. 26, no. 3-4, pp. 125–131, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Espinel-Ingroff, V. Chaturvedi, A. Fothergill, and M. G. Rinaldi, “Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study,” Journal of Clinical Microbiology, vol. 40, no. 10, pp. 3776–3781, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Klepser, E. J. Wolfe, R. N. Jones, C. H. Nightingale, and M. A. Pfaller, “Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 6, pp. 1392–1395, 1997. View at Google Scholar · View at Scopus
  32. L. M. Dalmau, “Observation on mycological technique with particular references to pathogenic fungi,” The Puerto Rico Journal of Public Health and Tropical Medicine, vol. 5, pp. 302–311, 1929. View at Google Scholar
  33. S. Gunji, K. Arima, and T. Beppu, “Screening of antifungal antibiotics according to activities inducing morphological abnormalities,” Agricultural and Biological Chemistry, vol. 47, no. 9, pp. 2061–2069, 1983. View at Publisher · View at Google Scholar · View at Scopus
  34. C. P. Kurtzman and J. W. Fell, The Yeats—A Taxonomie Study, Elsevier Science, Amsterdam, The Netherlands, 4th edition, 1998.
  35. E. P. Milan and L. L. Zaror, “Identificação laboratorial,” in Micologia médica à luz de autores contemporâneos, J. J. C. Sidrim and M. F. G. Rocha, Eds., pp. 89–101, Guanabara Koogan, Rio de Janeiro, Brazil, 2012. View at Google Scholar
  36. D. J. Frost, K. D. Brandt, D. Cugier, and R. Goldman, “A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly,” Journal of Antibiotics, vol. 48, no. 4, pp. 306–310, 1995. View at Google Scholar · View at Scopus
  37. A. Escalante, M. Gattuso, P. Pérez, and S. Zacchino, “Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman,” Journal of Natural Products, vol. 71, no. 10, pp. 1720–1725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. G. O. Onawunmi, W. A. Yisak, and E. O. Ogunlana, “Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf,” Journal of Ethnopharmacology, vol. 12, no. 3, pp. 279–286, 1984. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Cardoso and M. J. Soares, “In vitro effects of citral on Trypanosoma cruzi metacyclogenesis,” Memorias do Instituto Oswaldo Cruz, vol. 105, no. 8, pp. 1026–1032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Abe, Y. Sato, S. Inoue et al., “Anti-Candida albicans activity of essential oils including lemongrass (Cymbopogon citratus) oil and its component, citral,” Japanese Journal of Medical Mycology, vol. 44, pp. 285–291, 2003. View at Google Scholar
  41. V. G. De Billerbeck, C. G. Roques, J.-. Bessière, J.-. Fonvieille, and R. Dargent, “Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger,” Canadian Journal of Microbiology, vol. 47, no. 1, pp. 9–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. G. O. Onawunmi, “Evaluation of the antimicrobial activity of citral,” Letters in Applied Microbiology, vol. 9, no. 3, pp. 105–108, 1989. View at Publisher · View at Google Scholar · View at Scopus
  43. I. O. Lima, R. de Araújo G. Oliveira, E. de O. Lima, E. L. de Souza, N. P. Farias, and D. de Fátima Navarro, “Inhibitory effect of some phytochemicals in the growth of yeasts potentially causing opportunistic infections,” Brazilian Journal of Pharmaceutical Sciences, vol. 41, no. 2, pp. 199–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. I. O. Lima, F. De Medeiros Nóbrega, W. A. De Oliveira et al., “Anti-Candida albicans effectiveness of citral and investigation of mode of action,” Pharmaceutical Biology, vol. 50, no. 12, pp. 1536–1541, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. D. R. Oliveira, G. G. Leitão, S. S. Santos et al., “Ethnopharmacological study of two Lippia species from Oriximiná, Brazil,” Journal of Ethnopharmacology, vol. 108, pp. 103–108, 2006. View at Google Scholar
  46. B. R. Singh, V. Singh, R. K. Singh, and N. Ebibeni, “Antimicrobial activity of lemongrass (Cymbopogon citratus) oil against microbes of environmental, clinical and food origin,” International Research Journal of Pharmacy and Pharmacology, vol. 1, pp. 228–236, 2011. View at Google Scholar
  47. E. Cantón, J. Pemán, M. Gobernado, A. Viudes, and A. Espinel-Ingroff, “Patterns of amphotericin B killing kinetics against seven Candida species,” Antimicrobial Agents and Chemotherapy, vol. 48, pp. 2477–2482, 2004. View at Google Scholar
  48. A. K. Tyagi and A. Malik, “In situ SEM, TEM and AFM studies of the antimicrobial activity of lemon grass oil in liquid and vapour phase against Candida albicans,” Micron, vol. 41, no. 7, pp. 797–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. K. Tyagi and A. Malik, “Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus,” BMC Complementary and Alternative Medicine, vol. 10, article 65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. A. Alves, I. A. Freires, T. M. Pereira, A. Souza, E. O. Lima, and R. D. Castro, “Effect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology,” Acta Odontologica Scandinavica, vol. 71, pp. 965–971, 2013. View at Publisher · View at Google Scholar
  51. P. J. Rooney and B. S. Klein, “Linking fungal morphogenesis with virulence,” Cellular Microbiology, vol. 4, no. 3, pp. 127–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. N. A. R. Gow, A. J. P. Brown, and F. C. Odds, “Fungal morphogenesis and host invasion,” Current Opinion in Microbiology, vol. 5, no. 4, pp. 366–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Romani, F. Bistoni, and P. Puccetti, “Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts,” Current Opinion in Microbiology, vol. 6, no. 4, pp. 338–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. B. S. Klein and B. Tebbets, “Dimorphism and virulence in fungi,” Current Opinion in Microbiology, vol. 10, no. 4, pp. 314–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Zhai, P. Zhu, D. Foyle, S. Upadhyay, A. Idnurm, and X. Lin, “Congenic strains of the filamentous form of Cryptococcus neoformans for studies of fungal morphogenesis and virulence,” Infection and Immunity, vol. 81, no. 7, pp. 2626–2637, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. H. J. Lo, J. R. Köhler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G. R. Fink, “Nonfilamentous C. albicans mutants are avirulent,” Cell, vol. 90, no. 5, pp. 939–949, 1997. View at Google Scholar
  57. C. R. C. Rocha, K. Schröppel, D. Harcus et al., “Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans,” Molecular Biology of the Cell, vol. 12, no. 11, pp. 3631–3643, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Li, J. Bernhardt, and R. Calderone, “Temporal expression of the Candida albicans genes CHK1 and CSSK1, adherence, and morphogenesis in a model of reconstituted human esophageal epithelial candidiasis,” Infection and Immunity, vol. 70, no. 3, pp. 1558–1565, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Marcil, D. Harcus, D. Y. Thomas, and M. Whiteway, “Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment,” Infection and Immunity, vol. 70, no. 11, pp. 6319–6329, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Svetaz, M. B. Agüero, S. Alvarez et al., “Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action,” Planta Medica, vol. 73, no. 10, pp. 1074–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Harris, “Progress with superficial mycoses using essential oils,” International Journal of Aromatherapy, vol. 12, no. 2, pp. 83–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Kurita, M. Miyaji, R. Kurane, and Y. Takahara, “Antifungal activity of components of essential oils,” Agricultural and Biological Chemistry, vol. 45, no. 4, pp. 945–952, 1981. View at Publisher · View at Google Scholar · View at Scopus
  63. S. M. Bowman and S. J. Free, “The structure and synthesis of the fungal cell wall,” BioEssays, vol. 28, no. 8, pp. 799–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. C. S. Lunde and I. Kubo, “Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 7, pp. 1943–1953, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. S. B. Rajput and S. M. Karuppayil, “Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans,” SpringerPlus, vol. 2, article 26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. M. J. Park, K. S. Gwak, I. Yang et al., “Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes,” Fitoterapia, vol. 80, no. 5, pp. 290–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Neumann, M. Baginski, and J. Czub, “How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets,” Journal of the American Chemical Society, vol. 132, no. 51, pp. 18266–18272, 2010. View at Publisher · View at Google Scholar · View at Scopus