Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 385102, 10 pages
http://dx.doi.org/10.1155/2014/385102
Research Article

A Metabonomics Profiling Study on Phlegm Syndrome and Blood-Stasis Syndrome in Coronary Heart Disease Patients Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China

Received 12 March 2014; Revised 20 May 2014; Accepted 30 May 2014; Published 20 July 2014

Academic Editor: Aiping Lu

Copyright © 2014 Linlin Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. F. Jiang and J. C. Zhou, “Age characteristics analysis of 6295 patients with coronary heart disease,” Medical Information Operations Sciences Fascicule, vol. 25, no. 4, pp. 1389–1390, 2011. View at Google Scholar
  2. L. Shi, C. Y. Yang, J. Y. Zhang, and H. Li, “Recognition of ST segment of electrocardiogram based on wavelet transform,” Life Science Journal, vol. 4, no. 2, pp. 90–93, 2007. View at Google Scholar
  3. Q. Shi, H. H. Zhao, J. X. Chen et al., “Study on TCM syndrome identification modes of coronary heart disease based on data mining,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 697028, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Wang, P. Q. Wang, and X. J. Xiong, “Current situation and re-understanding of syndrome and formula syndrome in Chinese medicine,” Internal Medicine, vol. 2, article 113, 2012. View at Publisher · View at Google Scholar
  5. J. X. Zhou, M. Tang, and J. Li, “Analysis of Chinese syndrome features and combination laws of 2029 patients with coronary heart disease angina,” Chinese journal of integrated traditional and Western medicine, vol. 31, no. 6, pp. 753–755, 2011. View at Google Scholar · View at Scopus
  6. C. Matsumoto, T. Kojima, K. Ogawa et al., “A proteomic approach for the diagnosis of “Oketsu” (blood stasis), a pathophysiologic concept of Japanese traditional (Kampo) medicine,” Evidence-based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 463–474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Nicholson, J. Connelly, J. C. Lindon, and E. Holmes, “Metabonomics: a platform for studying drug toxicity and gene function,” Nature Reviews Drug Discovery, vol. 1, no. 2, pp. 153–161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. K. Nicholson, J. C. Lindon, and E. Holmes, ““Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data,” Xenobiotica, vol. 29, no. 11, pp. 1181–1189, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. T. Brindle, H. Antti, E. Holmes et al., “Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics,” Nature Medicine, vol. 8, no. 12, pp. 1439–1444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sun, J. Dai, W. Wang et al., “Metabonomic evaluation of ZHENG differentiation and treatment by Fuzhenghuayu tablet in hepatitis-B-caused cirrhosis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 453503, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, Z. F. Li, J. X. Chen et al., “Study of mini-pig serum of coronary heart disease (chronic myocardial ischemia) with syndrome of blood stasis based on nuclear magnetic resonance metabolomics,” Chinese Journal of Analytical Chemistry, vol. 39, no. 8, pp. 1274–1278, 2011. View at Google Scholar
  12. B. Yan, A. JiYe, H. P. Hao et al., “Metabonomic phenotype and identification of “heart blood stasis obstruction pattern” and “qi and yin deficiency pattern” of myocardial ischemia rat models,” Science in China, Series C: Life Sciences, vol. 52, no. 11, pp. 1081–1090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Q. Huang, Q. W. Chen, G. J. Yang et al., “Metabolic profiling study of yang deficiency syndrome in hepatocellular carcinoma by H1 NMR and pattern recognition,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 843048, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Theodoridis, H. G. Gika, and I. D. Wilson, “LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics,” Trends in Analytical Chemistry, vol. 27, no. 3, pp. 251–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Huang, P. Yin, X. Lu, H. Kong, and G. Xu, “Applications of chromatography-mass spectrometry in metabonomics,” Chinese Journal of Chromatography, vol. 27, no. 5, pp. 566–572, 2009. View at Google Scholar · View at Scopus
  16. M. M. Koek, R. H. Jellema, J. van der Greef, A. C. Tas, and T. Hankemeier, “Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives,” Metabolomics, vol. 7, no. 3, pp. 307–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. S. Wishart, M. J. Lewis, J. A. Morrissey et al., “The human cerebrospinal fluid metabolome,” Journal of Chromatography, vol. 871, no. 2, pp. 164–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. “Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the joint international society and federation of cardiology/world health organization task force on standardization of clinical nomenclature,” Circulation, vol. 59, no. 3, pp. 607–609, 1979. View at Publisher · View at Google Scholar
  19. Subcommittee of Cardiovascular Diseases of China Society of Integrated Traditional Chinese and Western Medicine, “Criteria for TCM syndrome differentiation of patients with coronary heart disease,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 11, no. 5, pp. 257–258, 1991. View at Google Scholar
  20. J. Trygg, E. Holmes, and T. Lundstedt, “Chemometrics in metabonomics,” Journal of Proteome Research, vol. 6, no. 2, pp. 469–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Westerhuis, T. Kourti, and J. F. Macgregor, “Analysis of multiblock and hierarchical PCA and PLS models,” Journal of Chemometrics, vol. 12, no. 5, pp. 301–321, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sun, X. Q. Gao, D. W. Zhang et al., “Identification of biomarkers for unstable angina by plasma metabolomic profiling,” Molecular BioSystems, vol. 9, no. 12, pp. 3059–3067, 2013. View at Google Scholar
  23. X. Wei, L. Wan, and S. M. Liu, “Plasma metabolomics study on blood stasis syndrome of coronary heart disease,” Journal of Traditional Chinese Medicine, vol. 54, pp. 587–591, 2013. View at Google Scholar
  24. M. White, “Mediators of inflammation and the inflammatory process,” Journal of Allergy and Clinical Immunology, vol. 103, no. 3, pp. S378–S381, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Samuelsson, “Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation,” Science, vol. 220, no. 4597, pp. 568–575, 1983. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Burke, R. Levi, Z. G. Guo, and E. J. Corey, “Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro,” Journal of Pharmacology and Experimental Therapeutics, vol. 221, no. 1, pp. 235–241, 1982. View at Google Scholar · View at Scopus
  27. J. R. Moffett and M. A. Namboodiri, “Tryptophan and the immune response,” Immunology & Cell Biology, vol. 81, no. 4, pp. 247–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Szabo, B. M. Sullivan, S. L. Peng, and L. H. Glimcher, “Molecular mechanisms regulating Th1 immune responses,” Annual Review of Immunology, vol. 21, pp. 713–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. C. Cuffy, A. M. Silverio, L. F. Qin et al., “Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-γ contributes to medial immunoprivilege,” The Journal of Immunology, vol. 179, no. 8, pp. 5246–5254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Schröcksnadel, B. Wirleitner, C. Winkler, and D. Fuchs, “Monitoring tryptophan metabolism in chronic immune activation,” Clinica Chimica Acta, vol. 364, no. 1-2, pp. 82–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Jiang, W. Dai, S. Yan et al., “Potential biomarkers in the urine of myocardial infarction rats: a metabolomic method and its application,” Molecular BioSystems, vol. 7, no. 3, pp. 824–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. J. Wang, A. Jiye, and B. Yan, “Metabonomic investigation on Traditional Chinese Medicine patterns of coronary artery disease,” World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, vol. 11, no. 1, pp. 127–133, 2009. View at Google Scholar
  33. K. Pellegrin, G. Neurauter, B. Wirleitner, A. W. Fleming, V. M. Peterson, and D. Fuchs, “Enhanced enzymatic degradation of tryptophan by indoleamine 2,3-dioxygenase contributes to the tryptophan-deficient state seen after major trauma,” Shock, vol. 23, no. 3, pp. 209–215, 2005. View at Google Scholar · View at Scopus
  34. K. Schroecksnadel, S. Kaser, M. Ledochowski et al., “Increased degradation of tryptophan in blood of patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 30, no. 9, pp. 1935–1939, 2003. View at Google Scholar · View at Scopus
  35. B. Widner, F. Leblhuber, and D. Fuchs, “Increased neopterin production and tryptophan degradation in advanced Parkinson's disease,” Journal of Neural Transmission, vol. 109, no. 2, pp. 181–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Wang, S. Guo, C. Li et al., “Analysis of plasma metabonomics of mini-swines with qi deficiency and blood stasis syndrome due to chronic myocardial ischemia,” Journal of Chinese Integrative Medicine, vol. 9, no. 2, pp. 158–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. P. Qi, H. W. Gu, Y. L. Song et al., “Metabolomics study of resina draconis on myocardial ischemia rats using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with pattern recognition methods and metabolic pathway analysis,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 438680, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Murr, T. B. Grammer, and A. Meinitzer, “Immune activation and inflammation in patients with cardiovascular disease are associated with higher phenylalanine to tyrosine ratios: the ludwigshafen risk and cardiovascular health study,” Journal of Amino Acids, vol. 2014, Article ID 783730, 6 pages, 2014. View at Publisher · View at Google Scholar
  39. B. Tavazzi, A. P. Batocchi, A. M. Amorini et al., “Serum metabolic profile in multiple sclerosis patients,” Multiple Sclerosis International, vol. 2011, Article ID 167156, 8 pages, 2011. View at Publisher · View at Google Scholar
  40. H. Yaoita, A. J. Fischman, H. W. Strauss, T. Saito, E. Sato, and Y. Maruyama, “Uridine: a marker of myocardial viability after coronary occlusion and reperfusion,” The International Journal of Cardiac Imaging, vol. 9, no. 4, pp. 273–280, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Xiang, P. Jiang, C. Zhan et al., “The serum metabolomic study of intervention effects of the traditional Chinese medicine Shexiang Baoxin Pill and a multi-component medicine polypill in the treatment of myocardial infarction in rats,” Molecular BioSystems, vol. 8, no. 9, pp. 2434–2442, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. F. J. Dowell, C. A. Hamilton, J. McMurray, and J. L. Reid, “Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings,” Journal of Cardiovascular Pharmacology, vol. 22, no. 6, pp. 792–797, 1993. View at Publisher · View at Google Scholar · View at Scopus
  43. H. S. Zhang, Y. H. Jia, and H. Y. Hua, “Study on phlegm syndrome and blood stasis syndrome in coronary artery disease with angina pector is based on metabolomics of urine,” Chinese Journal of Basic Medicine in Traditional Chinese Medicine, vol. 161, no. 2, pp. 126–128, 2010. View at Google Scholar
  44. L. K. Niskanen, D. E. Laaksonen, K. Nyyssönen et al., “Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study,” Archives of Internal Medicine, vol. 164, no. 14, pp. 1546–1551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. E. Puddu, M. Lanti, A. Menotti et al., “Serum uric acid for short-term prediction of cardiovascular disease incidence in the Gubbio population study,” Acta Cardiologica, vol. 56, no. 4, pp. 243–251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. V. G. Athyros, M. Elisaf, A. A. Papageorgiou et al., “Effect of statins versus untreated dyslipidemia on serum uric acid levels in patients with coronary heart disease: a subgroup analysis of the greek atorvastatin and coronary-heart-disease evaluation (GREACE) study,” American Journal of Kidney Diseases, vol. 43, no. 4, pp. 589–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Burakowski, R. T. Smoleński, J. Bellwon, A. Kubasik, D. Ciećwierz, and A. Rynkiewicz, “Exercise stress test and comparison of ST change with cardiac nucleotide catabolite production in patients with coronary artery disease,” Cardiology Journal, vol. 14, no. 6, pp. 573–579, 2007. View at Google Scholar · View at Scopus
  48. G. K. Glantzounis, E. C. Tsimoyiannis, A. M. Kappas, and D. A. Galaris, “Uric acid and oxidative stress,” Current Pharmaceutical Design, vol. 11, no. 32, pp. 4145–4151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. W. H. Liu, Q. Zhang, X. Z. Yan et al., “Metabonomics study on phlegm and blood stasis evolution of hyperlipidemia and atherosclerosis,” Journal of Traditional Chinese Medicine, vol. 49, no. 8, pp. 738–741, 2008. View at Google Scholar