Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014 (2014), Article ID 429246, 10 pages
http://dx.doi.org/10.1155/2014/429246
Research Article

Gardenia jasminoides Extract Attenuates the UVB-Induced Expressions of Cytokines in Keratinocytes and Indirectly Inhibits Matrix Metalloproteinase-1 Expression in Human Dermal Fibroblasts

1Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
2Gyeongbuk Natural Color Industry Institute, Gyeongbuk, Republic of Korea
3Ruby Crown Co., Ltd., Daegu, Republic of Korea

Received 4 November 2013; Revised 28 January 2014; Accepted 3 February 2014; Published 11 March 2014

Academic Editor: Ki-Wan Oh

Copyright © 2014 Jiaa Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Antoniou, M. G. Kosmadaki, A. J. Stratigos, and A. D. Katsambas, “Photoaging: prevention and topical treatments,” American Journal of Clinical Dermatology, vol. 11, no. 2, pp. 95–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G.-E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB Journal, vol. 21, no. 4, pp. 976–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Scharffetter-Kochanek, P. Brenneisen, J. Wenk et al., “Photoaging of the skin from phenotype to mechanisms,” Experimental Gerontology, vol. 35, no. 3, pp. 307–316, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. V.-M. Kähäri and U. Saarialho-Kere, “Matrix metalloproteinases in skin,” Experimental Dermatology, vol. 6, no. 5, pp. 199–213, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Bode, C. Fernandez-Catalan, H. Tschesche, F. Grams, H. Nagase, and K. Maskos, “Structural properties of matrix metalloproteinases,” Cellular and Molecular Life Sciences, vol. 55, no. 4, pp. 639–652, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Scharffetter, M. Wlaschek, A. Hogg et al., “UVA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo,” Archives of Dermatological Research, vol. 283, no. 8, pp. 506–511, 1991. View at Google Scholar · View at Scopus
  7. P. Brenneisen, J. Oh, M. Wlaschek et al., “Ultraviolet B wavelength dependence for the regulation of two major matrix-metalloproteinases and their inhibitor TIMP-1 in human dermal fibroblasts,” Photochemistry and Photobiology, vol. 64, no. 5, pp. 877–885, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Pillai, C. Oresajo, and J. Hayward, “Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review,” International Journal of Cosmetic Science, vol. 27, no. 1, pp. 17–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. J. Fisher, S. Kang, J. Varani et al., “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology, vol. 138, no. 11, pp. 1462–1470, 2002. View at Google Scholar · View at Scopus
  10. G. J. Fisher, H. S. Talwar, J. Lin et al., “Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo,” Journal of Clinical Investigation, vol. 101, no. 6, pp. 1432–1440, 1998. View at Google Scholar · View at Scopus
  11. P. Brenneisen, H. Sies, and K. Scharffetter-Kochanek, “Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events,” Annals of the New York Academy of Sciences, vol. 973, pp. 31–43, 2002. View at Google Scholar · View at Scopus
  12. J. Westermarck and V.-M. Kähäri, “Regulation of matrix metalloproteinase expression in tumor invasion,” FASEB Journal, vol. 13, no. 8, pp. 781–792, 1999. View at Google Scholar · View at Scopus
  13. K. K. Dong, N. Damaghi, S. D. Picart et al., “UV-induced DNA damage initiates release of MMP-1 in human skin,” Experimental Dermatology, vol. 17, no. 12, pp. 1037–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Fagot, D. Asselineau, and F. Bernerd, “Matrix metalloproteinase-1 production observed after solar-simulated radiation exposure is assumed by dermal fibroblasts but involves a paracrine activation through epidermal keratinocytes,” Photochemistry and Photobiology, vol. 79, no. 6, pp. 499–505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Fagot, D. Asselineau, and F. Bernerd, “Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation,” Archives of Dermatological Research, vol. 293, no. 11, pp. 576–583, 2002. View at Google Scholar · View at Scopus
  16. S. K. Katiyar, N. J. Korman, H. Mukhtar, and R. Agarwal, “Protective effects of silymarin against photocarcinogenesis in a mouse skin model,” Journal of the National Cancer Institute, vol. 89, no. 8, pp. 556–566, 1997. View at Google Scholar · View at Scopus
  17. N. Cole, P. W. Sou, A. Ngo et al., “Topical “Sydney” propolis protects against UV-radiation-induced inflammation, lipid peroxidation and immune suppression in mouse skin,” International Archives of Allergy and Immunology, vol. 152, no. 2, pp. 87–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. V. Jørgensen, H. J. Andersen, and L. H. Skibsted, “Kinetics of reduction of hypervalent iron in myoglobin by crocin in aqueous solution,” Free Radical Research, vol. 27, no. 1, pp. 73–87, 1997. View at Google Scholar · View at Scopus
  19. M. Uchiyama and M. Mihara, “Determination of malonaldehyde precursor in tissues by thiobarbituric acid test,” Analytical Biochemistry, vol. 86, no. 1, pp. 271–278, 1978. View at Google Scholar · View at Scopus
  20. C. H. Lee, S. B. Wu, C. H. Hong, H. S. Yu, and Y. H. Wei, “Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-based phototherapy,” International Journal of Molecular Sciences, vol. 14, no. 3, pp. 6414–6435, 2013. View at Publisher · View at Google Scholar
  21. L. A. Sitailo, S. S. Tibudan, and M. F. Denning, “Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes,” Journal of Biological Chemistry, vol. 277, no. 22, pp. 19346–19352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. G. R. Aitken, J. R. Henderson, S.-C. Chang, C. J. McNeil, and M. A. Birch-Machin, “Direct monitoring of UV-induced free radical generation in HaCaT keratinocytes,” Clinical and Experimental Dermatology, vol. 32, no. 6, pp. 722–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Podda, M. G. Traber, C. Weber, L.-J. Yan, and L. Packer, “UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin,” Free Radical Biology and Medicine, vol. 24, no. 1, pp. 55–65, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Watanabe and S. Terabe, “Analysis of natural food pigments by capillary electrophoresis,” Journal of Chromatography A, vol. 880, no. 1-2, pp. 311–322, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Epstein, “Photocarcinogenesis, skin cancer, and aging,” Journal of the American Academy of Dermatology, vol. 9, no. 4, pp. 487–502, 1983. View at Google Scholar · View at Scopus
  26. F. Afaq and H. Mukhtar, “Botanical antioxidants in the prevention of photocarcinogenesis and photoaging,” Experimental Dermatology, vol. 15, no. 9, pp. 678–684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. N. A. Soter, “Acute effects of ultraviolet radiation on the skin,” Seminars in Dermatology, vol. 9, no. 1, pp. 11–15, 1990. View at Google Scholar · View at Scopus
  28. F. Afaq and H. Mukhtar, “Effects of solar radiation on cutaneous detoxification pathways,” Journal of Photochemistry and Photobiology B, vol. 63, no. 1–3, pp. 61–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. F. D'Agostini, R. M. Balansky, A. Camoirano, and S. de Flora, “Modulation of light-induced skin tumors by N-acetylcysteine and/or ascorbic acid in hairless mice,” Carcinogenesis, vol. 26, no. 3, pp. 657–664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. J. Nickoloff and L. A. Turka, “Keratinocytes: key immunocytes of the integument,” American Journal of Pathology, vol. 143, no. 2, pp. 325–331, 1993. View at Google Scholar · View at Scopus
  31. M. Yoshizumi, T. Nakamura, M. Kato et al., “Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT,” Cell Biology International, vol. 32, no. 11, pp. 1405–1411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Ohguchi, T. Itoh, Y. Akao, H. Inoue, Y. Nozawa, and M. Ito, “SIRT1 modulates expression of matrix metalloproteinases in human dermal fibroblasts,” British Journal of Dermatology, vol. 163, no. 4, pp. 689–694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Ghahary, F. Karimi-Busheri, Y. Marcoux et al., “Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts,” Journal of Investigative Dermatology, vol. 122, no. 5, pp. 1188–1197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J.-D. Hsu, F.-P. I. Chou, M.-J. Lee et al., “Suppression of the TPA-induced expression of nuclear-protooncogenes in mouse epidermis by crocetin via antioxidant activity,” Anticancer Research, vol. 19, no. 5, pp. 4221–4227, 1999. View at Google Scholar · View at Scopus
  35. T. Q. Pham, F. Cormier, E. Farnworth, H. van Tong, and M.-R. van Calsteren, “Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1455–1461, 2000. View at Publisher · View at Google Scholar · View at Scopus