Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 562467, 12 pages
http://dx.doi.org/10.1155/2014/562467
Research Article

IKK β -Targeted Anti-Inflammatory Activities of a Butanol Fraction of Artificially Cultivated Cordyceps pruinosa Fruit Bodies

1Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
2Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
3Department of Forest Environment Protection, Kangwon National University, Chuncheon 200-701, Republic of Korea
4Institute of Mushroom, Mushtech, Chuncheon 200-180, Republic of Korea
5Department of Biochemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea
6Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea

Received 25 April 2014; Accepted 30 June 2014; Published 15 July 2014

Academic Editor: Youn Chul Kim

Copyright © 2014 Han Gyung Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Sekine, T. Yumioka, T. Yamamoto et al., “Modulation of TLR4 signaling by a novel adaptor protein signal-transducing adaptor protein-2 in macrophages,” Journal of Immunology, vol. 176, no. 1, pp. 380–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Takeda and S. Akira, “Roles of Toll-like receptors in innate immune responses,” Genes to Cells, vol. 6, no. 9, pp. 733–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Bresnihan, “Pathogenesis of joint damage in rheumatoid arthritis,” Journal of Rheumatology, vol. 26, no. 3, pp. 717–719, 1999. View at Google Scholar · View at Scopus
  4. G. R. Burmester, B. Stuhlmüller, G. Keyszer, and R. W. Kinne, “Mononuclear phagocytes and rheumatoid synovitis: mastermind or workhorse in arthritis?” Arthritis and Rheumatism, vol. 40, no. 1, pp. 5–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Gracie, R. J. Forsey, W. L. Chan et al., “A proinflammatory role for IL-18 in rheumatoid arthritis,” Journal of Clinical Investigation, vol. 104, no. 10, pp. 1393–1401, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Stuhlmuller, U. Ungethum, S. Scholze et al., “Identification of known and novel genes in activated monocytes from patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 43, no. 4, pp. 775–790, 2000. View at Google Scholar
  7. E. Michaëlsson, M. Holmdahl, Å. Engström, H. Burkhardt, A. Scheynius, and R. Holmdahl, “Macrophages, but not dendritic cells, present collagen to T cells,” European Journal of Immunology, vol. 25, no. 8, pp. 2234–2241, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. T. B. Ng and H. X. Wang, “Pharmacological actions of Cordyceps, a prized folk medicine,” Journal of Pharmacy and Pharmacology, vol. 57, no. 12, pp. 1509–1519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zhou, Z. Gong, Y. Su, J. Lin, and K. Tang, “Cordyceps fungi: natural products, pharmacological functions and developmental products,” Journal of Pharmacy and Pharmacology, vol. 61, no. 3, pp. 279–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Zhu, G. M. Halpern, and K. Jones, “The scientific rediscovery of a precious ancient Chinese herbal regimen: cordyceps sinensis Part II,” Journal of Alternative and Complementary Medicine, vol. 4, no. 4, pp. 429–457, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Zhu, G. M. Halpern, and K. Jones, “The scientific rediscovery of an ancient Chinese herbal medicine: cordyceps sinensis part I,” The Journal of Alternative and Complementary Medicine, vol. 4, no. 3, pp. 289–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Wojcikowski, D. W. Johnson, and G. Gobe, “Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies,” Journal of Laboratory and Clinical Medicine, vol. 147, no. 4, pp. 160–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Patel and A. Goyal, “Recent developments in mushrooms as anti-cancer therapeutics: a review,” 3 Biotech, vol. 2, no. 1, pp. 1–15, 2012. View at Publisher · View at Google Scholar
  14. K. Yue, M. Ye, Z. Zhou, W. Sun, and X. Lin, “The genus Cordyceps: a chemical and pharmacological review,” Journal of Pharmacy and Pharmacology, vol. 65, no. 4, pp. 474–493, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Kim, Y. Kwon, H. Chung et al., “Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-κB activation,” Toxicology and Applied Pharmacology, vol. 190, no. 1, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. H. G. Kim, H. Song, D. H. Yoon et al., “Cordyceps pruinosa extracts induce apoptosis of HeLa cells by a caspase dependent pathway,” Journal of Ethnopharmacology, vol. 128, no. 2, pp. 342–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Jeong, W. S. Yang, Y. Yang et al., “In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract,” Journal of Ethnopharmacology, vol. 146, no. 1, pp. 205–213, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kim and J. Y. Cho, “20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages,” Journal of Ginseng Research, vol. 37, no. 3, pp. 300–307, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Lee, E. Lee, and Y. T. Ko, “Anti-inflammatory effects of a methanol extract from Pulsatilla koreana in lipopolysaccharide-exposed rats,” BMB Reports, vol. 45, no. 6, pp. 371–376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Jeon, B. C. Park, J. G. Jung, Y. S. Jang, E. C. Shin, and Y. W. Park, “The soluble form of the cellular prion protein enhances phagocytic activity and cytokine Production by human monocytes via activation of ERK and NF-κB,” Immune Network, vol. 13, no. 4, pp. 148–156, 2013. View at Publisher · View at Google Scholar
  21. B. H. Kim, Y. G. Lee, J. Lee, J. Y. Lee, and J. Y. Cho, “Regulatory effect of cinnamaldehyde on monocyte/macrophage-mediated inflammatory responses,” Mediators of Inflammation, vol. 2010, Article ID 529359, 9 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Kwon, J. Jung, N. Park et al., “Annexin A5 as a new potential biomarker for cisplatin-induced toxicity in human kidney epithelial cells,” Biomolecules and Therapeutics, vol. 21, no. 3, pp. 190–195, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kim and J. Y. Cho, “20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages,” Journal of Ginseng Research, vol. 37, no. 3, pp. 293–299, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. C. K. Youn, S. J. Park, M. Y. Lee et al., “Silibinin inhibits LPS-induced macrophage activation by blocking p38 MAPK in RAW 264.7 cells,” Biomolecules and Therapeutics, vol. 21, no. 4, pp. 258–263, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Shen, J. Lee, M. H. Park et al., “Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and Cox-2 genes by suppression of an IKKβ-mediated NF-κB pathway in HEK293 cells,” Journal of Ginseng Research, vol. 35, no. 2, pp. 200–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Kim, Y. J. Son, S. Y. Lee et al., “JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide,” Biochemical Pharmacology, vol. 86, no. 12, pp. 1747–1761, 2013. View at Google Scholar
  27. J. K. Yoo, H. Y. Jung, C. Kim, W. S. Son, and J. K. Kim, “MiR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells,” Archives of Pharmacal Research, vol. 36, no. 3, pp. 353–358, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. S. E. Byeon, T. Yu, Y. Yang et al., “Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues,” Free Radical Biology and Medicine, vol. 57, pp. 105–118, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Shin, K. W. Kim, H. Y. Chung, S. Yoon, and J. Moon, “Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats,” Archives of Pharmacal Research, vol. 36, no. 5, pp. 626–633, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Okabe, H. Miyake, and Y. Awane, “Cytoprotective effects of NC-1300 and omeprazole on HCl·ethanol-induced gastric lesions in rats,” Japanese Journal of Pharmacology, vol. 42, no. 1, pp. 123–133, 1986. View at Publisher · View at Google Scholar · View at Scopus
  31. W. S. Yang, D. Jeong, G. Nam et al., “AP-1 pathway-targeted inhibition of inflammatory responses in LPS-treated macrophages and EtOH/HCl-treated stomach by Archidendron clypearia methanol extract,” Journal of Ethnopharmacology, vol. 146, no. 2, pp. 637–644, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Yu, Y. Yi, Y. Yang, J. Oh, D. Jeong, and J. Y. Cho, “The pivotal role of TBK1 in inflammatory responses mediated by macrophages,” Mediators of Inflammation, vol. 2012, Article ID 979105, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. E. Byeon, Y. S. Yi, J. Oh, B. C. Yoo, S. Hong, and J. Y. Cho, “The role of Src kinase in macrophage-mediated inflammatory responses,” Mediators of Inflammation, vol. 2012, Article ID 512926, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. E. S. Han, J. Y. Oh, and H. Park, “Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 703–710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Yu, J. Shim, Y. Yang et al., “3-(4-(tert-Octyl)phenoxy)propane-1,2-diol suppresses inflammatory responses via inhibition of multiple kinases,” Biochemical Pharmacology, vol. 83, no. 11, pp. 1540–1551, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. E. Byeon, J. Lee, B. C. Yoo et al., “P38-Targeted inhibition of interleukin-12 expression by ethanol extract from Cordyceps bassiana in lipopolysaccharide-activated macrophages,” Immunopharmacology and Immunotoxicology, vol. 33, no. 1, pp. 90–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D. K. Park and H. Park, “Ethanol extract of cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate-(DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators,” BioMed Research International, vol. 2013, Article ID 102918, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Lu, “Study on effect of Cordyceps sinensis and artemisinin in preventing recurrence of lupus nephritis,” Chinese Journal of Modern Developments in Traditional Medicine, vol. 22, no. 3, pp. 169–171, 2002. View at Google Scholar · View at Scopus
  39. H. G. Kim, B. Shrestha, S. Y. Lim et al., “Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells,” European Journal of Pharmacology, vol. 545, no. 2-3, pp. 192–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. O. Lee, B. Shrestha, G. H. Sung, S. K. Han, T. W. Kim, and J. M. Sung, “Cultural characteristics and fruiting body production in Cordyceps bassiana,” Mycobiology, vol. 38, no. 2, pp. 118–121, 2010. View at Publisher · View at Google Scholar
  41. G. Wu, L. Li, G. H. Sung et al., “Inhibition of 2,4-dinitrofluorobenzene-induced atopic dermatitis by topical application of the butanol extract of Cordyceps bassiana in NC/Nga mice,” Journal of Ethnopharmacology, vol. 134, no. 2, pp. 504–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. T. J. Oh, S. H. Hyun, S. G. Lee, Y. J. Chun, G. H. Sung, and H. K. Choi, “NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions,” PLoS ONE, vol. 9, no. 3, Article ID e90823, 2014. View at Publisher · View at Google Scholar