Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 698617, 14 pages
http://dx.doi.org/10.1155/2014/698617
Review Article

Botanical, Pharmacological, Phytochemical, and Toxicological Aspects of the Antidiabetic Plant Bidens pilosa L.

Wen-Chin Yang1,2,3,4,5

1Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Section 2, Nankang, Taipei 115, Taiwan
2Institute of Pharmacology, Yang-Ming University, Taipei 112, Taiwan
3Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
4Institute of Zoology, National Taiwan University, Taipei 106, Taiwan
5Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan

Received 4 October 2013; Accepted 27 November 2013; Published 29 January 2014

Academic Editor: Sharad Kr. Srivastava

Copyright © 2014 Wen-Chin Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Laios, M. Karamanou, Z. Saridaki, and G. Androutsos, “Aretaeus of Cappadocia and the first description of diabetes,” Hormones, vol. 11, no. 1, pp. 109–113, 2012. View at Google Scholar · View at Scopus
  2. J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, “Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Research and Clinical Practice, vol. 87, no. 1, pp. 4–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Attele, Y.-P. Zhou, J.-T. Xie et al., “Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component,” Diabetes, vol. 51, no. 6, pp. 1851–1858, 2002. View at Google Scholar · View at Scopus
  4. J. P. Boyle, M. M. Engelgau, T. J. Thompson et al., “Estimating prevalence of type 1 and type 2 diabetes in a population of African Americans with diabetes mellitus,” American Journal of Epidemiology, vol. 149, no. 1, pp. 55–63, 1999. View at Google Scholar · View at Scopus
  5. A. P. Bartolome, I. M. Villasenor, and W. C. Yang, “Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 340215, 51 pages, 2013. View at Publisher · View at Google Scholar
  6. M. Habeck, “Diabetes treatments get sweet help from nature,” Nature Medicine, vol. 9, no. 10, p. 1228, 2003. View at Google Scholar · View at Scopus
  7. R. J. Marles and N. R. Farnsworth, “Antidiabetic plants and their active constituents,” Phytomedicine, vol. 2, no. 2, pp. 137–189, 1995. View at Google Scholar · View at Scopus
  8. J. Singh, E. Cumming, G. Manoharan, H. Kalasz, and E. Adeghate, “Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions,” Open Medicinal Chemistry Journal, vol. 5, no. 2, supplement, pp. 70–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. O. Karis and O. Ryding, “Asteraceae: cladistics and classification,” K. Bremer, Ed., pp. 559–569, Timber press, Portland, Ore, USA, 1994. View at Google Scholar
  10. O. N. Pozharitskaya, A. N. Shikov, M. N. Makarova et al., “Anti-inflammatory activity of a HPLC-fingerprinted aqueous infusion of aerial part of Bidens tripartita L,” Phytomedicine, vol. 17, no. 6, pp. 463–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Q. Oliveira, V. Andrade-Neto, A. U. Krettli, and M. G. L. Brandão, “New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 39–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Agriculture USDo, “Plants database,” in Natural Resources Conservation Service, United State, United States Department of Agriculture, 2012. View at Google Scholar
  13. C. Ge, “Cytologic study of Bidens bipinnata L,” China Journal of Chinese Materia Medica, vol. 15, no. 2, pp. 72–125, 1990. View at Google Scholar · View at Scopus
  14. M. J. Alcaraz and M. J. Jimenez, “Flavonoids as anti-inflammatory agents,” Fitoterapia, vol. 59, no. 1, pp. 25–38, 1988. View at Google Scholar · View at Scopus
  15. S.-C. Chien, P. H. Young, Y.-J. Hsu et al., “Anti-diabetic properties of three common Bidens pilosa variants in Taiwan,” Phytochemistry, vol. 70, no. 10, pp. 1246–1254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. FAO U, “Agriculture food and nutrition for Africa,” in A Resource Book for Teachers of Agriculture, Publishing Management Group, FAO Information Division, Rome, Italy, 1997. View at Google Scholar
  17. M. B. Rokaya, Z. Münzbergová, B. Timsina, and K. R. Bhattarai, “Rheum australe D. Don: a review of its botany, ethnobotany, phytochemistry and pharmacology,” Journal of Ethnopharmacology, vol. 141, no. 3, pp. 761–774, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. P. H. Young, Y. J. Hsu, and C. W. Yang, “Bidens pilosa L. and its medicinal use,” in Recent Progress in Medicinal Plants Drug Plant II, A. S. Awaad, V. K. Singh, and J. N. Govil, Eds., Standium Press LLC, 2010. View at Google Scholar
  19. K. Redl, W. Breu, B. Davis, and R. Bauer, “Anti-inflammatory active polyacetylenes from Bidens campylotheca,” Planta Medica, vol. 60, no. 1, pp. 58–62, 1994. View at Google Scholar · View at Scopus
  20. C. L.-T. Chang, S.-L. Chang, Y.-M. Lee et al., “Cytopiloyne, a polyacetylenic glucoside, prevents type 1 diabetes in nonobese diabetic mice,” Journal of Immunology, vol. 178, no. 11, pp. 6984–6993, 2007. View at Google Scholar · View at Scopus
  21. C. L.-T. Chang, H.-K. Kuo, S.-L. Chang et al., “The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice,” Journal of Biomedical Science, vol. 12, no. 1, pp. 79–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. T. Chang, H. Y. Liu, and T. F. Kuo, “Anti-diabetic effect and mode of action of cytopiloyne,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 685642, 13 pages, 2013. View at Publisher · View at Google Scholar
  23. S.-L. Chang, C. L.-T. Chang, Y.-M. Chiang et al., “Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice,” Planta Medica, vol. 70, no. 11, pp. 1045–1051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y.-M. Chiang, C. L.-T. Chang, S.-L. Chang, W.-C. Yang, and L.-F. Shyur, “Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator,” Journal of Ethnopharmacology, vol. 110, no. 3, pp. 532–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. L. T. Chang, Y. C. Chen, H. M. Chen, N. S. Yang, and W. C. Yang, “Natural cures for type 1 diabetes: a review of phytochemicals, biological actions, and clinical potential,” Current Medicinal Chemistry, vol. 20, no. 7, pp. 899–907, 2013. View at Google Scholar
  26. M. Laakso, “Insulin resistance and its impact on the approach to therapy of Type 2 diabetes,” International Journal of Clinical Practice, no. 121, pp. 8–12, 2001. View at Google Scholar · View at Scopus
  27. R. S. Clements Jr. and D. S. H. Bell, “Complications of diabetes: prevalence, detection, current treatment, and prognosis,” American Journal of Medicine, vol. 79, no. 5, pp. 2–7, 1985. View at Google Scholar · View at Scopus
  28. J. L. Leahy, I. B. Hirsch, K. A. Peterson, and D. Schneider, “Targeting β-cell function early in the course of therapy for type 2 diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 9, pp. 4206–4216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. W. Lin, G. Y. Han, and S. X. Liao, “Studies on the active constituents of the Chinese traditional medicine Polygonatum odoratum (Mill.) Druce,” Acta Pharmaceutica Sinica, vol. 29, no. 3, pp. 215–222, 1994. View at Google Scholar · View at Scopus
  30. R. P. Ubillas, C. D. Mendez, S. D. Jolad et al., “Antihyperglycemic acetylenic glucosides from Bidens pilosa,” Planta Medica, vol. 66, no. 1, pp. 82–83, 2000. View at Google Scholar · View at Scopus
  31. Y.-J. Hsu, T.-H. Lee, C. L.-T. Chang, Y.-T. Huang, and W.-C. Yang, “Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract,” Journal of Ethnopharmacology, vol. 122, no. 2, pp. 379–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. L. Silva, D. C. H. Fischer, J. F. Tavares, M. S. Silva, P. F. De Athayde-Filho, and J. M. Barbosa-Filho, “Compilation of secondary metabolites from Bidens pilosa L,” Molecules, vol. 16, no. 2, pp. 1070–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Wang, B. Yang, D. Zhu, D. He, and L. Wang, “Active components of Bidens pilosa L,” Zhongcaoyao, vol. 36, pp. 20–21, 2005. View at Google Scholar
  34. F. Bohlmann, T. Burkhardt, and C. Zdero, Naturally Occuring Acetylenes, Academic Press, New York, NY, USA, 1973.
  35. T. M. Sarg, A. M. Ateya, N. M. Farrag, and F. A. Abbas, “Constituents and biological activity of Bidens pilosa L. grown in Egypt,” Acta Pharmaceutica Hungarica, vol. 61, no. 6, pp. 317–323, 1991. View at Google Scholar · View at Scopus
  36. H. A. Lastra Valdés and H. P. De León Rego, “Bidens pilosa Linné,” Revista Cubana de Plantas Medicinales, vol. 6, no. 1, pp. 28–33, 2001. View at Google Scholar · View at Scopus
  37. F. Bohlmann, H. Bornowski, and K. M. Kleine, “New polyynes from the tribe Heliantheae,” Chemische Berichte, vol. 97, pp. 2135–2138, 1964. View at Google Scholar
  38. R. Wang, Q.-X. Wu, and Y.-P. Shi, “Polyacetylenes and flavonoids from the aerial parts of Bidens pilosa,” Planta Medica, vol. 76, no. 9, pp. 893–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L.-W. Wu, Y.-M. Chiang, H.-C. Chuang et al., “A novel polyacetylene significantly inhibits angiogenesis and promotes apoptosis in human endothelial cells through activation of the CDK inhibitors and caspase-7,” Planta Medica, vol. 73, no. 7, pp. 655–661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L.-W. Wu, Y.-M. Chiang, H.-C. Chuang et al., “Polyacetylenes function as anti-angiogenic agents,” Pharmaceutical Research, vol. 21, no. 11, pp. 2112–2119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. H.-L. Yang, S.-C. Chen, N.-W. Chang et al., “Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes,” Food and Chemical Toxicology, vol. 44, no. 9, pp. 1513–1521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. H.-Q. Wang, S.-J. Lu, H. Li, and Z.-H. Yao, “EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana,” Journal of Environmental Sciences, vol. 19, no. 12, pp. 1496–1499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Tobinaga, M. K. Sharma, W. G. L. Aalbersberg et al., “Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa,” Planta Medica, vol. 75, no. 6, pp. 624–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Zhao, Q. Zhao, and L. Peng, “A new chalcone glycoside from Bidens pilosa,” Acta Botanica Yunnanica, vol. 26, no. 1, pp. 121–126, 2004. View at Google Scholar
  45. L. Alvarez, S. Marquina, M. L. Villarreal, D. Alonso, E. Aranda, and G. Delgado, “Bioactive polyacetylenes from Bidens pilosa,” Planta Medica, vol. 62, no. 4, pp. 355–357, 1996. View at Google Scholar · View at Scopus
  46. R. L. C. Pereira, T. Ibrahim, L. Lucchetti, A. J. R. Da Silva, and V. L. G. De Moraes, “Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L,” Immunopharmacology, vol. 43, no. 1, pp. 31–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Kusano, A. Kusano, and Y. Seyama, “Novel hypoglycemic and antiinflammatory polyacetylenic compounds, their compositions, Bidens plant extract fractions, and compositions containing the plant or fraction,” in JPO, Tokyo, Japan, 2004. View at Google Scholar
  48. C.-K. Lee, “The low polar constituents from Bidens pilosa L. var. minor (blume) sherff,” Journal of the Chinese Chemical Society, vol. 47, no. 5, pp. 1131–1136, 2000. View at Google Scholar · View at Scopus
  49. M. G. L. Brandão, A. U. Krettli, L. S. R. Soares, C. G. C. Nery, and H. C. Marinuzzi, “Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds,” Journal of Ethnopharmacology, vol. 57, no. 2, pp. 131–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. A. U. Krettli, V. F. Andrade-Neto, M. D. G. L. Brandão, and W. M. S. Ferrari, “The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review,” Memorias do Instituto Oswaldo Cruz, vol. 96, no. 8, pp. 1033–1042, 2001. View at Google Scholar · View at Scopus
  51. P. Geissberger and U. Sequin, “Constituents of Bidens pilosa L.: do the components found so far explain the use of this plant in traditional medicine?” Acta Tropica, vol. 48, no. 4, pp. 251–261, 1991. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Wang, H. Yang, Z.-W. Lin, and H.-D. Sun, “Flavonoids from Bidens pilosa var. radiata,” Phytochemistry, vol. 46, no. 7, pp. 1275–1278, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. C.-K. Wat, R. K. Biswas, E. A. Graham, L. Bohm, G. H. N. Towers, and E. R. Waygood, “Ultraviolet-mediated cytotoxic activity of phenylheptatriyne from Bidens pilosa L,” Journal of Natural Products, vol. 42, pp. 103–111, 1979. View at Google Scholar · View at Scopus
  54. T. Dimo, J. Azay, P. V. Tan et al., “Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats,” Journal of Ethnopharmacology, vol. 76, no. 3, pp. 215–221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. S. W. Wright, R. R. Harris, J. S. Kerr et al., “Synthesis, chemical, and biological properties of vinylogous hydroxamic acids: dual inhibitors of 5-lipoxygenase and IL-1 biosynthesis,” Journal of Medicinal Chemistry, vol. 35, no. 22, pp. 4061–4068, 1992. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Wu, H. Chen, X. Hua, Z. Shi, L. Zhang, and J. Chen, “Clinical therapeutic effect of drug-separated moxibustion on chronic diarrhea and its immunologic mechanisms,” Journal of Traditional Chinese Medicine, vol. 17, no. 4, pp. 253–258, 1997. View at Google Scholar · View at Scopus
  57. T. B. Nguelefack, T. Dimo, E. P. Nguelefack Mbuyo, P. V. Tan, S. V. Rakotonirina, and A. Kamanyi, “Relaxant effects of the neutral extract of the leaves of Bidens pilosa linn on isolated rat vascular smooth muscle,” Phytotherapy Research, vol. 19, no. 3, pp. 207–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. W. R. Almirón and M. E. Brewer, “Classification of Immature Stage Habitats of Culicidae (Diptera) Collected in Córdoba, Argentina,” Memorias do Instituto Oswaldo Cruz, vol. 91, no. 1, pp. 1–9, 1996. View at Google Scholar · View at Scopus
  59. N.-L. Wang, J. Wang, X.-S. Yao, and S. Kitanaka, “Two new monoterpene glycosides and a new (+)-jasmololone glucoside from Bidens parviflora Willd,” Journal of Asian Natural Products Research, vol. 9, no. 5, pp. 473–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. N. P. Rybalchenko, V. A. Prykhodko, S. S. Nagorna et al., “In vitro antifungal activity of phenylheptatriyne from Bidens cernua L. against yeasts,” Fitoterapia, vol. 81, no. 5, pp. 336–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Frida, S. Rakotonirina, A. Rakotonirina, and J.-P. Savineau, “In vivo and in vitro effects of Bidens pilosa L. (asteraceae) leaf aqueous and ethanol extracts on primed-oestrogenized rat uterine muscle,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 5, no. 1, pp. 79–91, 2008. View at Google Scholar · View at Scopus
  62. J. O. C. Ezeonwumelu, A. K. Julius, C. N. Muhoho et al., “Biochemical and histological studies of aqueous extract of Bidens pilosa leaves from Ugandan Rift valley in Rats,” British Journal of Pharmacology and Toxicology, vol. 2, no. 6, pp. 302–309, 2011. View at Google Scholar