Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 782830, 11 pages
http://dx.doi.org/10.1155/2014/782830
Review Article

Ethnobotanical, Phytochemical, Pharmacological, and Toxicological Aspects of Persicaria hydropiper (L.) Delarbre

1Centre for Drug and Herbal Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

Received 6 February 2014; Accepted 25 March 2014; Published 16 April 2014

Academic Editor: Man Hee Rhee

Copyright © 2014 A. K. M. Moyeenul Huq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The International Plant Names Index, 2005, http://www.ipni.org/ipni/plantNameByVersion.do?id=123908-3&version=1.1.
  2. The Plant List, “A working list of all plant species,” 2013, http://www.theplantlist.org/.
  3. Australian Plant Name Index (APNI), Integrated Botanical Information System (IBIS). Australian National Botanic Gardens, Australian National Herbarium, January 2014, http://www.anbg.gov.au/cgi-bin/apni?taxon_id=39312.
  4. Flora of North America, “Persicaria hydropiper,” January 2014, http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=242100096.
  5. Flora of Missouri, “Polygonum hydropiper,” January 2014, http://www.efloras.org/florataxon.aspx?flora_id=610&taxon_id=200006723.
  6. USDA, ““Polygonum hydropiper L. marshpepper knotweed,” January 2014, http://www.plants.usda.gov/core/profile?symbol=POHY.
  7. J. A. Duke, M. J. Bogenschutz-Godwin, J. duCellier, and P. A. K. Duke, Handbook of Medicinal Herbs, CRC Press, Boca Raton, Fla, USA, 2002.
  8. Flora of China, “Polygonum hydropiper,” January 2014, http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200006723.
  9. Ethnobotanical Database of Bangladesh (EDB) 3.1, “Taxonomic Information, Phyto-chemical Constituents & Traditional Uses of Plants,” January 2013, http://www.ethnobotanybd.com/index.php?action=Taxonomy&key=sci.
  10. I. H. Burkill, A Dictionary of the Economic Products of the Malay Peninsula, vol. 2, Ministry of Agriculture and Co-operatives, Kuala Lumpur, Malaysia, 1966.
  11. USDA, “GRIN taxonomy for plants, Taxon: Persicaria hydropiper (L.) Delarbre,” January 2014, http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl.
  12. D. T. Loi, The Glossary of Vietnamese Medicinal Plants and Items, Hanoi Medicine Publishing House, Hanoi, Vietnam, 2000.
  13. M. Miyazawa and N. Tamura, “Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade),” Biological and Pharmaceutical Bulletin, vol. 30, no. 3, pp. 595–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. C. Das, P. K. Sarker, and M. M. Rahman, “Aphidicidal activity of some indigenous plant extracts against bean aphid Aphis craccivora Koch (Homoptera: Aphididae),” Journal of Pest Science, vol. 81, no. 3, pp. 153–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. V. Banthorpe, “Polygonum hydropiper L. (water pipper): In vitro culture and the production of the aphid-antifeedant polygodial,” in Medicinal and Aromatic Plant IV, Biotechnology in Agriculture and Forestry, Y. P. S. Bajaj, Ed., vol. 21, pp. 269–279, Springer, Berlin, Germany, 1993. View at Google Scholar
  16. Z. F. Peng, D. Strack, A. Baumert et al., “Antioxidant flavonoids from leaves of Polygonum hydropiper L,” Phytochemistry, vol. 62, no. 2, pp. 219–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. N. H. Noor Hashim, F. Abas, K. Shaari, and N. H. Lajis, “LC-DAD-ESIMS/MS characterization of antioxidant and anticholinesterase constituents present in the active fraction from Persicaria hydropiper,” LWT—Food Science and Technology, vol. 46, no. 2, pp. 468–476, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Fukuyama, T. Sato, Y. Asakawa, and T. Takemoto, “A potent cytotoxic warburganal and related drimane-type sesquiterpenoids from Polygonum hydropiper,” Phytochemistry, vol. 21, no. 12, pp. 2895–2898, 1980. View at Google Scholar · View at Scopus
  19. Ministry of Health, Labour and Welfare, “List of existing food additives,” in Foods Food Ingred (Editorial), vol. 166, pp. 93–101, Japan, 1995, (Japanese). View at Google Scholar
  20. G. A. Stuart, Chinese Materia Medica, Vegetable Kingdom. Southern Materials Centre, Taipei, Taiwan, 1979.
  21. E. Blatter, J. F. Caius, and K. S. Mhaskar, Indian Medicinal Plants, Periodical Experts Book Agency, Vivek Vihar, India, 1998.
  22. A. Chevallier, The Encyclopedia of Medicinal Plants, Dorling Kindersley, London, UK, 1996.
  23. J. L. Hartwell, “Plants used against cancer. A survey,” Lloydia, vol. 33, no. 3, pp. 288–392, 1970. View at Google Scholar · View at Scopus
  24. I. Tita, D. M. George, and G. T. Monica, “Ethnobotanical inventory of medicinal plants from the South-West of Romania,” Farmacia, vol. 57, no. 2, pp. 141–156, 2009. View at Google Scholar · View at Scopus
  25. D. Moerman, Native American Ethnobotany, Timber Press, Oregaon, USA, 1998.
  26. A. Hazarika and H. N. Sarma, “The estrogenic effects of Polygonum hydropiper root extract induce follicular recruitment and endometrial hyperplasia in female albino rats,” Contraception, vol. 74, no. 5, pp. 426–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Goswami, A. Hazarika, and H. N. Sarma, “Thin layer chromatographic fraction of root extract of Polgonum hydropiper induces vaginal epithelial cell maturation in adult ovariectomized albino rat,” Journal of Endocrinology Reproduction, vol. 12, no. 1, pp. 39–46, 2008. View at Google Scholar
  28. R. K. Choudhary, S. Oh, and J. Lee, “An ethnomedicinal inventory of knotweeds of Indian Himalaya,” Journal of Medicinal Plant Research, vol. 5, no. 10, pp. 2095–2103, 2011. View at Google Scholar · View at Scopus
  29. N. D. Namsa, M. Mandal, S. Tangjang, and S. C. Mandal, “Ethnobotany of the Monpa ethnic group at Arunachal Pradesh, India,” Journal of Ethnobiology and Ethnomedicine, vol. 7, article 31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. K. Choudhury and R. C. Srivastava, “IPR and traditional knowledge of Adi, Memba and Khamba tribes of upper siang distric, Arunachal Pradesh,” in The National Conference on IPR: Plant Varieties and Genome Conservation, K. Arvind, Ed., S.P. Mukharjee College, 2006.
  31. D. Mahanta and S. C. Tiwari, “Natural dye-yielding plants and indigenous knowledge on dye preparation in Arunachal Pradesh, northeast India,” Current Science, vol. 88, no. 9, pp. 1474–1480, 2005. View at Google Scholar · View at Scopus
  32. M. Rahmatullah, I. J. Mukti, A. K. M. Fahmidul Haque et al., “An ethnobotanical survey and pharmacological evaluation of medicinal plants used by the Garo tribal community living in Netrakona district, Bangladesh,” Advances in Natural and Applied Sciences, vol. 3, pp. 402–418, 2009. View at Google Scholar
  33. S. Hanif Bari and M. Rahmatulla, “Medicinal plants of the santal tribe residing in rajshahi district, Bangladesh,” American-Eurasian Journal of Sustainable Agriculture, vol. 3, pp. 220–226, 2009. View at Google Scholar
  34. M. Yusuf, J. Begum, M. N. Hoque, and J. U. Chowdhury, Medicinal Plants of Bangladesh, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh, 2009.
  35. A. Ghani, Medicinal Plants of Bangladesh: Chemical Constituents and Uses, Asiatic Society of Bangladesh, Dhaka, Bangladesh, 2nd edition, 1998.
  36. P. G. Xiao and N. G. Wang, “Can ethnopharmacology contribute to the development of anti-fertility drugs?” Journal of Ethnopharmacology, vol. 32, no. 1–3, pp. 167–177, 1991. View at Google Scholar · View at Scopus
  37. J. A. Duke and E. S. Ayensu, Medicinal Plants of China, Reference Publications, Algonac, USA, 1985.
  38. K. Akamatsu, Wakanyaku, Ishiyakushuppan, Tokyo, Japan, 1970.
  39. K. S. Yusif and K. F. Blinova, “Flavonoid aglycones of Polygonum hydropiper,” Chemistry of Natural Compounds, vol. 20, no. 5, pp. 625–626, 1984. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Yang, B. C. Wang, X. Zhang et al., “Simultaneous determination of nine flavonoids in Polygonum hydropiper L. samples using nanomagnetic powder three-phase hollow fibre-based liquid-phase microextraction combined with ultrahigh performance liquid chromatography-mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 2, pp. 311–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Hawrył and M. Waksmundzka-Hajnos, “Two-dimensional thin-layer chromatography of selected Polygonum sp. extracts on polar-bonded stationary phases,” Journal of Chromatography A, vol. 1218, no. 19, pp. 2812–2819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Sultana, R. Hossain, A. Adhikari et al., “Drimane-type sesquiterpenes from Polygonum hydropiper,” Planta Medica, vol. 77, no. 16, pp. 1848–1851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. P. V. Kiem, N. X. Nhiem, N. X. Cuong et al., “New phenylpropanoid esters of sucrose from Polygonum hydropiper and their antioxidant activity,” Archives of Pharmacal Research, vol. 31, no. 11, pp. 1477–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Haraguchi, K. Hashimoto, and A. Yagi, “Antioxidative substances in leaves of Polygonum hydropiper,” Journal of Agriculture and Food Chemistry, vol. 40, pp. 1349–1351, 1992. View at Google Scholar
  45. H. Haraguchi, I. Ohmi, S. Sakai et al., “Effect of Polygonum hydropiper sulfated flavonoids on lens aldose reductase and related enzymes,” Journal of Natural Products, vol. 59, no. 4, pp. 443–445, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Yagi, T. Uemura, N. Okamura, H. Haraguchi, T. Imoto, and K. Hashimoto, “Antioxidative sulphated flavonoids in leaves of Polygonum hydropiper,” Phytochemistry, vol. 35, no. 4, pp. 885–887, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Fukuyama, T. Sato, I. Miura, and Y. T. Asakawa, “Drimane-type sesqui- and norsesquiterpenoids from Polygonum hydropiper,” Phytochemistry, vol. 24, no. 7, pp. 1521–1524, 1985. View at Google Scholar · View at Scopus
  48. V. Duraipandiyan, F. Indwar, and S. Ignacimuthu, “Antimicrobial activity of confertifolin from Polygonum hydropiper,” Pharmaceutical Biology, vol. 48, no. 2, pp. 187–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. C. S. Barnes and J. W. Loder, “Structure of polygodial: a new sesquiterpene dialdehyde from Polygonum hydropiper,” Australian Journal of Chemistry, vol. 15, pp. 322–327, 1962. View at Google Scholar
  50. Y. Fukuyama, T. Sato, I. Miura, Y. Asakawa, and T. Takemoto, “Hydropiperoside, a novel coumaryl glycoside from the root of Polygonum hydropiper,” Phytochemistry, vol. 22, no. 2, pp. 549–552, 1983. View at Google Scholar · View at Scopus
  51. T. Furuta, Y. Fukuyama, and Y. Asakawa, “Polygonolide, an isocoumarin from Polygonum hydropiper possessing anti-inflammatory activity,” Phytochemistry, vol. 25, no. 2, pp. 517–520, 1986. View at Google Scholar · View at Scopus
  52. Y. Asakawa and T. Takemoto, “New norsesquiterpene aldehyde and sesquiterpene hemiacetal from the seed of Polygonum hydropiper,” Experientia, vol. 35, no. 11, pp. 1420–1421, 1979. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Ono, M. Nakao, M. Toyota et al., “Catechin production in cultured Polygonum hydropiper cells,” Phytochemistry, vol. 49, no. 7, pp. 1935–1939, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. M. J. M. Hagendoorn, T. A. M. Geelen, T. A. van Beek, D. C. L. Jamar, F. A. A. Tetteroo, and L. H. W. van der Plas, “Occurrence of polygodial in plant organs and tissue culture of Polygonum hydropiper,” Physiologia Plantarum, vol. 92, no. 4, pp. 595–600, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. J. I. Sánchez-Gallego, A. López-Revuelta, J. L. Sardina, Á. Hernández-Hernández, J. Sánchez-Yagüe, and M. Llanillo, “Membrane cholesterol contents modify the protective effects of quercetin and rutin on integrity and cellular viability in oxidized erythrocytes,” Free Radical Biology and Medicine, vol. 48, pp. 1444–1454, 2010. View at Google Scholar
  56. I. Kubo, K.-I. Fujita, S. H. Lee, and T. J. Ha, “Antibacterial activity of polygodial,” Phytotherapy Research, vol. 19, no. 12, pp. 1013–1017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Malheiros, V. C. Filho, C. B. Schmitt et al., “Antifungal activity of drimane sesquiterpenes from Drimys brasiliensis using bioassay-guided fractionation,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 2, pp. 335–339, 2005. View at Google Scholar · View at Scopus
  58. S. H. Lee, J. R. Lee, C. S. Lunde, and I. Kubo, “In vitro antifungal susceptibilities of Candida albicans and other fungal pathogens to polygodial, a sesquiterpene dialdehyde,” Planta Medica, vol. 65, no. 3, pp. 204–208, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Kubo and M. Taniguchi, “Polygodial, an antifungal potentiator,” Journal of Natural Products, vol. 51, no. 1, pp. 22–29, 1988. View at Google Scholar · View at Scopus
  60. M. Taniguchi, Y. Yano, E. Tada et al., “Mode of action of polygodial, an antifungal sesquiterpene dialdehyde,” Agricultural and Biological Chemistry, vol. 52, no. 6, pp. 1409–1414, 1988. View at Google Scholar · View at Scopus
  61. K. Machida, T. Tanaka, and M. Taniguchi, “Depletion of glutathione as a cause of the promotive effects of polygodial, a sesquiterpene on the production of reactive oxygen species in Saccharomyces cerevisiae,” Journal of Bioscience and Bioengineering, vol. 88, no. 5, pp. 526–530, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. C. S. Lunde and I. Kubo, “Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 7, pp. 1943–1953, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. M. V. Castelli, A. F. Lodeyro, A. Malheiros, S. A. S. Zacchino, and O. A. Roveri, “Inhibition of the mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene,” Biochemical Pharmacology, vol. 70, no. 1, pp. 82–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. K.-I. Fujita and I. Kubo, “Multifunctional action of antifungal polygodial against Saccharomyces cerevisiae: involvement of pyrrole formation on cell surface in antifungal action,” Bioorganic and Medicinal Chemistry, vol. 13, no. 24, pp. 6742–6747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. O. Raihan, M. Khalequeuzzaman, A. Brishti, S. M. Tareq, A. Hossain, and S. Rana, “Anthelmintic and Antiproliferative activity of aerial parts of Persicaria hydropiper,” Der Pharmasia Sinica, vol. 3, pp. 104–110, 2012. View at Google Scholar
  66. I. Kubo, Y.-W. Lee, M. Pettei, F. Pilkiewicz, and K. Nakanishi, “Potent army worm antifeedants from the east African Warburgia plants,” Journal of the Chemical Society, Chemical Communications, no. 24, pp. 1013–1014, 1976. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Asakawa, G. W. Dawson, D. C. Griffiths et al., “Activity of drimane antifeedants and related compounds against aphids, and comparative biological effects and chemical reactivity of (-)- and (+)-polygodial,” Journal of Chemical Ecology, vol. 14, no. 10, pp. 1845–1855, 1988. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Moreno-Osorioa, M. Cortés, V. Armstrong, M. Bailén, and A. González-Coloma, “Antifeedant activity of some polygodial derivatives,” Zeitschrift Für Naturforschung C, A Journal of Biosciences, vol. 63, pp. 215–220, 2008. View at Google Scholar
  69. N. Zapata, F. Budia, E. Viñuela, and P. Medina, “Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae),” Industrial Crops and Products, vol. 30, no. 1, pp. 119–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Prota, H. J. Bouwmeester, and M. A. Jongsma, “Comparative antifeedant activities of polygodial and pyrethrins against whiteflies (Bemisia tabaci) and aphids (Myzus persicae),” Pest Management Science, vol. 70, no. 4, pp. 682–688, 2013. View at Publisher · View at Google Scholar
  71. I. Lajter, I. Zupkó, J. Molnár et al., “Antiproliferative activity of Polygonaceae species from the Carpathian Basin against human cancer cell lines,” Phytotherapy Research, vol. 27, no. 1, pp. 77–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Anke and O. Sterner, “Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated sesquiterpene dialdehydes from plants and mushrooms,” Planta Medica, vol. 57, no. 4, pp. 344–346, 1991. View at Google Scholar · View at Scopus
  73. Y. Yang, T. Yu, H.-J. Jang et al., “In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 616–625, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. M. El Sayah, V. Cechinel Filho, R. A. Yunes, T. R. Pinheiro, and J. B. Calixto, “Action of polygodial, a sesquiterpene isolated from Drymis winteri, in the guinea-pig ileum and trachea “in vitro”,” European Journal of Pharmacology, vol. 344, no. 2-3, pp. 215–221, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. F. M. da Cunha, T. S. Fröde, G. L. Mendes et al., “Additional evidence for the anti-inflammatory and anti-allergic properties of the sesquiterpene polygodial,” Life Sciences, vol. 70, no. 2, pp. 159–169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Rahman, S. A. Goni, M. T. Rahman, and M. Ahmed, “Antinociceptive activity of Polygonum hydropiper,” Fitoterapia, vol. 73, no. 7-8, pp. 704–706, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. G. L. Mendes, A. R. S. Santos, M. M. Campos et al., “Anti-hyperalgesic properties of the extract and of the main sesquiterpene polygodial isolated from the barks of Drymis winteri (Winteraceae),” Life Sciences, vol. 63, no. 5, pp. 369–381, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. G. L. Mendes, A. R. S. Santos, A. Malheiros, V. Cechinel Filho, R. A. Yunes, and J. B. Calixto, “Assessment of mechanisms involved in antinociception caused by sesquiterpene polygodial,” Journal of Pharmacology and Experimental Therapeutics, vol. 292, no. 1, pp. 164–172, 2000. View at Google Scholar · View at Scopus
  79. E. Andre, J. Ferreira, Â. Malheiros, R. A. Yunes, and J. B. Calixto, “Evidence for the involvement of vanilloid receptor in the antinociception produced by the dialdeydes unsaturated sesquiterpenes polygodial and drimanial in rats,” Neuropharmacology, vol. 46, no. 4, pp. 590–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. S. K. Garg, V. S. Mathur, and R. R. Chaudhury, “Screening of Indian plants for antifertility activity,” Indian Journal of Experimental Biology, vol. 16, no. 10, pp. 1077–1079, 1978. View at Google Scholar · View at Scopus
  81. A. Hazarika and H. N. Sarma, “Polygonum hydropiper crude root extract mimics estrogenic properties in females: evidence of uterine protein profiles studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis,” Reproductive Medicine and Biology, vol. 5, no. 2, pp. 155–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Goswami, A. Hazarika, and H. N. Sarma, “Root extract of Polygonum hydropiper alters the expression of rat uterine protein profile in presence and absence of ovary in-situ during periimplantation period: evidence on SDA-PAGE,” Journal of Reproduction and Contraception, vol. 20, no. 4, pp. 223–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Goswami, A. Hazarika, and H. N. Sarma, “Chromatographic fraction of Polygonum hydropiper root modulates the expression of transforming growth factor-βI (TGF-βI) in rat uterus during days 2–6 of gestation,” Journal of Reproduction and Contraception, vol. 22, no. 3, pp. 153–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. S.-H. Lee, B. Kim, M. J. Oh et al., “Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/-βcatenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells,” Phytotherapy Research, vol. 25, no. 11, pp. 1629–1635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. C. J. Ma, K. Y. Lee, E. J. Jeong et al., “Persicarin from water dropwort (Oenanthe javanica) protects primary cultured rat cortical cells from glutamate-induced neurotoxicity,” Phytotherapy Research, vol. 24, no. 6, pp. 913–918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Kuroiwa, M. Shibutani, K. Inoue, K.-Y. Lee, G.-H. Woo, and M. Hirose, “Subchronic toxicity study of water pepper extract in F344 rats,” Food and Chemical Toxicology, vol. 44, no. 8, pp. 1236–1244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Morales, M. Andersson, L. Lewan, and O. Sterner, “Structure-activity relationships for unsaturated dialdehydes. 6. The mutagenic activity of 11 compounds in th V79/HGPRT assay,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 268, no. 2, pp. 315–321, 1992. View at Publisher · View at Google Scholar · View at Scopus
  88. A. R. Clapham, T. Tutin, and E. F. Warburg, Flora of the British Isles, Cambridge University Press, Cambridge, UK, 1952.
  89. L. H. Martini, L. Cereser, I. Z. Junior et al., “The sesquiterpenes polygodial and drimanial in vitro affect glutamatergic transport in rat brain,” Neurochemical Research, vol. 31, no. 3, pp. 431–438, 2006. View at Publisher · View at Google Scholar · View at Scopus