Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014 (2014), Article ID 873803, 8 pages
http://dx.doi.org/10.1155/2014/873803
Research Article

Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.)

1Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
3Malaysian Agriculture Research and Development Institute, 43400 Serdang, Selangor, Malaysia

Received 2 October 2013; Revised 12 December 2013; Accepted 1 January 2014; Published 16 February 2014

Academic Editor: Hamid Reza Sadeghnia

Copyright © 2014 Ali Ghasemzadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Monographs on Selected Medicinal Plants, vol. 1, World Health Organization, 2009.
  2. A. Ghasemzadeh and H. Z. E. Jaafar, “Profiling of phenolic compounds and their antioxidant and anticancer activity in pandan (Pandanus amaryllifolius Roxb.) extracts from different locations of Malaysia,” BMC Complementary and Alternative Medicine, vol. 13, article 341, 2013. View at Google Scholar
  3. S. J. Park, H. Myoung, Y. Y. Kim et al., “Anticancer effects of genistein, green tea catechins, and cordycepin on oral squamous cell carcinoma,” Journal of Oral and Maxillofacial Surgery, vol. 34, pp. 1–10, 2008. View at Google Scholar
  4. U. J. Jung, M.-K. Lee, Y. B. Park, M. A. Kang, and M.-S. Choi, “Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 7, pp. 1134–1145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. K. Atoui, A. Mansouri, G. Boskou, and P. Kefalas, “Tea and herbal infusions: their antioxidant activity and phenolic profile,” Food Chemistry, vol. 89, no. 1, pp. 27–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. García-Lafuente, E. Guillamón, A. Villares, M. A. Rostagno, and J. A. Martínez, “Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease,” Inflammation Research, vol. 58, no. 9, pp. 537–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Dahlui, S. Ramli, and A. M. Bulgiba, “Breast cancer prevention and control programs in Malaysia,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 6, pp. 1631–1634, 2011. View at Google Scholar · View at Scopus
  8. I. C. W. Arts, D. R. Jacobs Jr., M. Gross, L. J. Harnack, and A. R. Folsom, “Dietary catechins and cancer incidence among postmenopausal women: The Iowa Women's Health Study (United States),” Cancer Causes and Control, vol. 13, no. 4, pp. 373–382, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. D. W. Lamson and M. S. Brignall, “Antioxidants and cancer III: quercetin,” Alternative Medicine Review, vol. 5, no. 3, pp. 196–208, 2000. View at Google Scholar · View at Scopus
  10. G. V. Satyavati, A. K. Gupta, and N. Tendon, Medicinal Plants of India, vol. 2, Indian Council of Medical Research, New Delhi, India, 1987.
  11. C. Ito, M. Itoigawa, K. Nakao et al., “Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii,” Phytomedicine, vol. 13, no. 5, pp. 359–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Mohd Nor, M. Suhaila, I. N. Aini, and I. Razali, “Antioxidative properties of Murraya koenigii leaf extracts in accelerated oxidation and deep-frying studies,” International Journal of Food Sciences and Nutrition, vol. 60, no. 2, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Muthumani, S. Venkatraman, K. V. Ramseshu et al., “Pharmacological studies of anticancer, anti inflammatory activities of Murraya koenigii (Linn) Spreng in experimental animals,” Journal of Pharmaceutical Sciences and Research, vol. 1, no. 3, pp. 137–141, 2009. View at Google Scholar · View at Scopus
  14. B. Dineshkumar, A. Mitra, and M. Mahadevappa, “Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves,” International Journal of Phytomedicine, vol. 2, no. 1, pp. 22–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. V. Tembhurne and D. M. Sakarkar, “Hypoglycemic effects of fruit juice of Murraya koenigii (L) in alloxan induced diabetic mice,” International Journal of PharmTech Research, vol. 1, no. 4, pp. 1589–1593, 2009. View at Google Scholar · View at Scopus
  16. A. Crozier, E. Jensen, M. E. J. Lean, and M. S. McDonald, “Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography,” Journal of Chromatography A, vol. 761, no. 1-2, pp. 315–321, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. D.-O. Kim, O. I. Padilla-Zakour, and P. D. Griffiths, “Flavonoids and antioxidant capacity of various cabbage genotypes at juvenile stage,” Journal of Food Science, vol. 69, no. 9, pp. C685–C689, 2004. View at Google Scholar · View at Scopus
  18. B. Sultana, F. Anwar, and M. Ashraf, “Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts,” Molecules, vol. 14, no. 6, pp. 2167–2180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Bae, G. K. Jayaprakasha, J. Jifon, and B. S. Patil, “Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers,” Food Chemistry, vol. 130, no. 3, pp. 751–758, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. Standard Operating Protocol, HPLC Analysis of Phenolic Acids, CB0103, Botanical Center for Age-Related Diseases, West Lafayette, Ind, USA, 2001.
  21. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Mensor, F. S. Menezes, G. G. Leitão et al., “Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method,” Phytotherapy Research, vol. 15, no. 2, pp. 127–130, 2001. View at Google Scholar
  23. C. B. S. Lau, C. Y. Ho, C. F. Kim et al., “Cytotoxic activities of Coriolus versicolor (Yunzhi) extract on human leukemia and lymphoma cells by induction of apoptosis,” Life Sciences, vol. 75, no. 7, pp. 797–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Zhang, S. N. Hettiarachchy, R. Horax et al., “Phytochemicals, antioxidant and antimicrobial activity of Hibiscus sabdariffa, Centella asiatica, Moringa oleifera and Murraya koenigii leaves,” Journal of Medicinal Plants Research, vol. 5, no. 30, pp. 6672–6680, 2011. View at Google Scholar
  25. K. H. Miean and S. Mohamed, “Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants,” Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 3106–3112, 2001. View at Google Scholar · View at Scopus
  26. F. Sun, X. Y. . Zheng, J. Ye, T. T. . Wu, Jl. Wang, and W. Chen, “Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo,” Nutrition and Cancer, vol. 64, no. 4, pp. 599–606, 2012. View at Google Scholar
  27. R. Takasawa, A. Tao, K. Saeki et al., “Discovery of a new type inhibitor of human glyoxalase i by myricetin-based 4-point pharmacophore,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 14, pp. 4337–4342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C.-C. Wong, H.-B. Li, K.-W. Cheng, and F. Chen, “A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay,” Food Chemistry, vol. 97, no. 4, pp. 705–711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Wojdyło, J. Oszmiański, and R. Czemerys, “Antioxidant activity and phenolic compounds in 32 selected herbs,” Food Chemistry, vol. 105, no. 3, pp. 940–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Wu, G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, and R. L. Prior, “Lipophilic and hydrophilic antioxidant capacities of common foods in the United States,” Journal of Agricultural and Food Chemistry, vol. 52, no. 12, pp. 4026–4037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Y. Wang, “Antioxidant capacity of berry crops, culinary herbs and medicinal herbs,” Acta Horticulture, no. 620, pp. 461–473, 2003. View at Google Scholar
  32. A. Ghasemzadeh, H. Z. E. Jaafar, and A. Rahmat, “Antioxidant activities, total phenolics and flavonoids content in two varieties of malaysia young ginger (Zingiber officinale Roscoe),” Molecules, vol. 15, no. 6, pp. 4324–4333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Ghasemzadeh, H. Z. E. Jaafar, E. Karimi, and M. H. Ibrahim, “Combined effect of CO2 enrichment and foliar application of Salicylic acid on anthocyanin, flavonoids and isoflavonoids production and their antioxidant activity in ginger,” BMC Complementary and Alternative Medicine, vol. 12, article 229, 2012. View at Google Scholar
  34. W. Bors, W. Heller, C. Michel, and M. Saran, “Radical chemistry of flavonoid antioxidants,” Advances in Experimental Medicine and Biology, vol. 264, pp. 165–170, 1990. View at Google Scholar · View at Scopus
  35. D. Marinova, F. Ribarova, and M. Atanassova, “Total phenolics and total flavonoids in Bulgaria fruits and vegetables,” Journal of the University of Chemical Technology and Metallurgy, vol. 40, pp. 255–260, 2005. View at Google Scholar
  36. O. A. Odukoya, S. I. Inya-Agha, F. I. Segun, M. O. Sofidiyaand, and O. O. Ilori, “Antioxidant activity of selected Nigerian green leafy vegetables,” American Journal of Food Technology, vol. 2, no. 3, pp. 169–175, 2007. View at Google Scholar · View at Scopus
  37. R. Pulido, L. Bravo, and F. Saura-Calixto, “Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay,” Journal of Agricultural and Food Chemistry, vol. 48, no. 8, pp. 3396–3402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Arnous, D. P. Makris, and P. Kefalas, “Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece,” Journal of Food Composition and Analysis, vol. 15, no. 6, pp. 655–665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Ghasemzadeh, H. Z. E. Jaafar, and E. Karimi, “Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties,” International Journal of Molecular Science, no. 13, pp. 14828–14844, 2012. View at Google Scholar
  40. A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, and N. Vidal, “Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds,” Food Chemistry, vol. 97, no. 4, pp. 654–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Katalinic, M. Milos, T. Kulisic, and M. Jukic, “Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols,” Food Chemistry, vol. 94, no. 4, pp. 550–557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Ghasemzadeh and H. Z. E. Jaafar, “Antioxidant potential and anticancer activity of Malaysian young ginger (Zingiber officinale Roscoe) varieties grown under different CO2 concentration,” Journal of Medicinal Plants Research, vol. 5, no. 14, pp. 3247–3255, 2011. View at Google Scholar
  43. A. Itharat, P. J. Houghton, E. Eno-Amooquaye, P. J. Burke, J. H. Sampson, and A. Raman, “In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer,” Journal of Ethnopharmacology, vol. 90, no. 1, pp. 33–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. K. Roy, V. N. Thalang, G. Trakoontivakorn, and K. Nakahara, “Mechanism of mahanine-induced apoptosis in human leukemia cells (HL-60),” Biochemical Pharmacology, vol. 67, no. 1, pp. 41–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Bhattacharya, S. K. Samanta, R. Tripathi et al., “Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways,” Biochemical Pharmacology, vol. 79, no. 3, pp. 361–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Parmar, A. Gangwal, and N. Sheth, “Mast cell membrane stabilization and anti-histaminic actions possible mechanism of action of anti-inflammatory action of Murraya koenigii,” Journal of Current Pharmaceutical Research, vol. 2, no. 1, pp. 21–25, 2010. View at Google Scholar
  47. K. H. Handral, P. Anup, and S. D. Shruthi, “A review on Murraya koenigii: multipotential medicinal plant,” Asian Journal on Pharmaceutical and Clinical Research, vol. 5, no. 4, pp. 5–14, 2012. View at Google Scholar
  48. M. S. Vaibhav, D. Kamlesh, P. Manohar, and R. M. Kakasaheb, “Application of quality control principles to herbal drugs,” International Journal of Phytomedicine, vol. 1, pp. 4–8, 2009. View at Google Scholar
  49. I. F. F. Benzie and S. Wachtel-Galor, Herbal Medicine: Biomolecular and Clinical Aspects, CRC Press, Taylor and Francis, 2nd edition, 2011.
  50. P. A. Paranagama, A. A. C. K. Adhikari, K. P. Abeywickrama, and K. A. N. P. Bandara, “Toxicity and repellant activity of Cymbopogon citratus (D.C.) Stapf. and Murraya koenigii Sprang. against Callosobruchus maculatus (F.) (Coleoptera, Bruchidae),” Tropical Agricultural Research and Extension, vol. 5, no. 1-2, 2002. View at Google Scholar