Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2015, Article ID 598412, 11 pages
http://dx.doi.org/10.1155/2015/598412
Research Article

Toxic Markers of Matrine Determined Using 1H-NMR-Based Metabolomics in Cultured Cells In Vitro and Rats In Vivo

1School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
2International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China

Received 30 May 2015; Accepted 9 August 2015

Academic Editor: Orazio Taglialatela-Scafati

Copyright © 2015 Zhonghuang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X.-M. Li and L. Brown, “Efficacy and mechanisms of action of traditional Chinese medicines for treating asthma and allergy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 297–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. R. Guzman, J. S. Koo, J. R. Goldsmith, M. Mühlbauer, A. Narula, and C. Jobin, “Oxymatrine prevents NF-κB nuclear translocation and ameliorates acute intestinal inflammation,” Scientific Reports, vol. 3, p. 1629, 2013. View at Google Scholar · View at Scopus
  3. Y. Yang, J. Xiu, X. Zhang et al., “Antiviral effect of matrine against human enterovirus 71,” Molecules, vol. 17, no. 9, pp. 10370–10376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Liu, Y. Xu, W. Ji et al., “Anti-tumor activities of matrine and oxymatrine: literature review,” Tumor Biology, vol. 35, no. 6, pp. 5111–5119, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sun, H. Cao, L. Sun et al., “Antitumor activities of kushen: literature review,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 373219, 11 pages, 2012. View at Publisher · View at Google Scholar
  6. H. Zhou, M. Xu, Y. Gao et al., “Matrine induces caspase-independent program cell death in hepatocellular carcinoma through bid-mediated nuclear translocation of apoptosis inducing factor,” Molecular Cancer, vol. 13, no. 1, article 59, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Q. Liu, H. N. Yuan, L. Xie, X. N. Jin, and X. Q. Lid, “Effect of sophocarpine and other alkaloids from Sophora alopeculoides L. on monoamine metabolism, dopamine and 5-HT receptors,” Yao Xue Xue Bao, vol. 22, no. 9, pp. 645–649, 1987. View at Google Scholar · View at Scopus
  8. Z.-G. Lu, M.-H. Li, J.-S. Wang, D.-D. Wei, Q.-W. Liu, and L.-Y. Kong, “Developmental toxicity and neurotoxicity of two matrine-type alkaloids, matrine and sophocarpine, in zebrafish (Danio rerio) embryos/larvae,” Reproductive Toxicology, vol. 47, pp. 33–41, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. X.-Y. Wang, L. Liang, J.-L. Chang, M.-H. Yang, and Z.-G. Li, “Toxicity of matrine in Kunming mice,” Nan Fang Yi Ke Da Xue Xue Bao, vol. 30, no. 9, pp. 2154–2155, 2010. View at Google Scholar · View at Scopus
  10. A. K. Drew, A. Bensoussan, I. M. Whyte, A. H. Dawson, X. Zhu, and S. P. Myers, “Chinese herbal medicine toxicology database: monograph on radix sophorae flavescentis, ‘Ku Shen’,” Journal of Toxicology—Clinical Toxicology, vol. 40, no. 2, pp. 173–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. X. P. Wang and R. M. Yang, “Movement disorders possibly induced by traditional Chinese herbs,” European Neurology, vol. 50, no. 3, pp. 153–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Čuperlović-Culf, D. A. Barnett, A. S. Culf, and I. Chute, “Cell culture metabolomics: applications and future directions,” Drug Discovery Today, vol. 15, no. 15-16, pp. 610–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. J. Boudonck, M. W. Mitchell, L. Német et al., “Discovery of metabolomics biomarkers for early detection of nephrotoxicity,” Toxicologic Pathology, vol. 37, no. 3, pp. 280–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. Boudonck, D. J. Rose, E. D. Karoly, D. P. Lee, K. A. Lawton, and P. J. Lapinskas, “Metabolomics for early detection of drug-induced kidney injury: review of the current status,” Bioanalysis, vol. 1, no. 9, pp. 1645–1663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Ni, G. Xie, and W. Jia, “Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery,” Journal of Proteome Research, vol. 13, no. 9, pp. 3857–3870, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Holmes, F. W. Bonner, and J. K. Nicholson, “Comparative studies on the nephrotoxicity of 2-bromoethanamine hydrobromide in the Fischer 344 rat and the multimammate desert mouse (Mastomys natalensis),” Archives of Toxicology, vol. 70, no. 2, pp. 89–95, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Kim, S. H. Ryu, S. Kim et al., “Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans,” Analytical Chemistry, vol. 85, no. 23, pp. 11326–11334, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Teng, W. Huang, T. W. Collette, D. R. Ekman, and C. Tan, “A direct cell quenching method for cell-culture based metabolomics,” Metabolomics, vol. 5, no. 2, pp. 199–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Bringaud, M. Biran, Y. Millerioux, M. Wargnies, S. Allmann, and M. Mazet, “Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways,” Molecular Microbiology, vol. 96, no. 5, pp. 917–926, 2015. View at Publisher · View at Google Scholar
  20. S. Wiklund, E. Johansson, L. Sjöström et al., “Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models,” Analytical Chemistry, vol. 80, no. 1, pp. 115–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Wang, J. Bai, G. Chen et al., “A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using 1H NMR spectroscopy,” Journal of Ethnopharmacology, vol. 146, no. 2, pp. 572–580, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ruiz-Aracama, A. Peijnenburg, J. Kleinjans et al., “An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin,” BMC Genomics, vol. 12, article 251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. E. L. Ulrich, H. Akutsu, J. F. Doreleijers et al., “BioMagResBank,” Nucleic Acids Research, vol. 36, no. 1, pp. D402–D408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. S. Wishart, T. Jewison, A. C. Guo et al., “HMDB 3.0—the human metabolome database in 2013,” Nucleic Acids Research, vol. 41, no. 1, pp. D801–D807, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Fukuda, Y. Hirai, H. Yoshida, T. Nakajima, and T. Usui, “Free amino acid content of lymphocytes and granulocytes compared,” Clinical Chemistry, vol. 28, no. 8, pp. 1758–1761, 1982. View at Google Scholar · View at Scopus
  26. X. Li, F. Zhang, D. Wang, Z. Li, X. Qin, and G. Du, “NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury,” Journal of Pharmaceutical and Biomedical Analysis, vol. 89, pp. 42–49, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Waterfield, J. A. Turton, M. D. C. Scales, and J. A. Timbrell, “Investigations into the effects of various hepatotoxic compounds on urinary and liver taurine levels in rats,” Archives of Toxicology, vol. 67, no. 4, pp. 244–254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. K. P. R. Gartland, F. W. Bonner, and J. K. Nicholson, “Investigations into the biochemical effects of region-specific nephrotoxins,” Molecular Pharmacology, vol. 35, no. 2, pp. 242–250, 1989. View at Google Scholar · View at Scopus
  29. P. J. D. Foxall, G. J. Mellotte, M. R. Bending, J. C. Lindon, and J. K. Nicholson, “NMR spectroscopy as a novel approach to the monitoring of renal transplant function,” Kidney International, vol. 43, no. 1, pp. 234–245, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. A. N. Phipps, J. Stewart, B. Wright, and I. D. Wilson, “Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity,” Xenobiotica, vol. 28, no. 5, pp. 527–537, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Y. Um, J. H. Park, M. W. Chung et al., “Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats,” Analytica Chimica Acta, vol. 722, pp. 87–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. R. E. Williams, H. W. Eyton-Jones, M. J. Farnworth, R. Gallagher, and W. M. Provan, “Effect of intestinal microflora on the urinary metabolic profile of rats: a 1H-nuclear magnetic resonance spectroscopy study,” Xenobiotica, vol. 32, no. 9, pp. 783–794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Draoui and O. Feron, “Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments,” Disease Models and Mechanisms, vol. 4, no. 6, pp. 727–732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. K. R. Engskog, M. Björklund, J. Haglöf, T. Arvidsson, M. Shoshan, and C. Pettersson, “Metabolic profiling of epithelial ovarian cancer cell lines: evaluation of harvesting protocols for profiling using NMR spectroscopy,” Bioanalysis, vol. 7, no. 2, pp. 157–166, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Whitaker-Menezes, U. E. Martinez-Outschoorn, Z. Lin et al., “Evidence for a stromal-epithelial ‘lactate shuttle’ in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts,” Cell Cycle, vol. 10, no. 11, pp. 1772–1783, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Louis, G. L. Hold, and H. J. Flint, “The gut microbiota, bacterial metabolites and colorectal cancer,” Nature reviews. Microbiology, vol. 12, no. 10, pp. 661–672, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Belt, J. A. Thomas, R. N. Buchsbaum, and E. Racker, “Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids,” Biochemistry, vol. 18, no. 16, pp. 3506–3511, 1979. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Klawitter, N. Anderson, J. Klawitter et al., “Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study,” British Journal of Cancer, vol. 100, no. 6, pp. 923–931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Le, C. R. Cooper, A. M. Gouw et al., “Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2037–2042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Raina, N. J. Serkova, and R. Agarwal, “Silibinin feeding alters the metabolic profile in TRAMP prostatic tumors: 1H-NMRS-based metabolomics study,” Cancer Research, vol. 69, no. 9, pp. 3731–3735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. I. F. Duarte, A. F. Ladeirinha, I. Lamego et al., “Potential markers of cisplatin treatment response unveiled by NMR metabolomics of human lung cells,” Molecular Pharmaceutics, vol. 10, no. 11, pp. 4242–4251, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. R. V. Farese Jr. and T. C. Walther, “Lipid droplets finally get a little R-E-S-P-E-C-T,” Cell, vol. 139, no. 5, pp. 855–860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Rambold, S. Cohen, and J. Lippincott-Schwartz, “Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics,” Developmental Cell, vol. 32, no. 6, pp. 678–692, 2015. View at Publisher · View at Google Scholar
  45. J.-Q. Zhang, Y.-M. Li, T. Liu et al., “Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy,” World Journal of Gastroenterology, vol. 16, no. 34, pp. 4281–4290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Zhang, J. Qi, L. Sun et al., “Matrine induces programmed cell death and regulates expression of relevant genes based on PCR array analysis in C6 glioma cells,” Molecular Biology Reports, vol. 36, no. 4, pp. 791–799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Dröge, V. Hack, R. Breitkreutz et al., “Role of cysteine and glutathione in signal transduction, immunopathology and cachexia,” BioFactors, vol. 8, no. 1-2, pp. 97–102, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Cheng, Y. Du, L. Huang, Z. Jing, and Z. Zheng, “Effect of matrine on HepG2 cells: role of glutathione and cytochrome c,” The Chinese-German Journal of Clinical Oncology, vol. 7, no. 4, pp. 213–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. I. F. Duarte, I. Lamego, J. Marques, M. P. M. Marques, B. J. Blaise, and A. M. Gil, “Nuclear magnetic resonance (NMR) study of the effect of cisplatin on the metabolic profile of MG-63 osteosarcoma cells,” Journal of Proteome Research, vol. 9, no. 11, pp. 5877–5886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. S. Opstad, B. A. Bell, J. R. Griffiths, and F. A. Howe, “Taurine: a potential marker of apoptosis in gliomas,” British Journal of Cancer, vol. 100, no. 5, pp. 789–794, 2009. View at Publisher · View at Google Scholar · View at Scopus