Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2015 (2015), Article ID 714158, 7 pages
http://dx.doi.org/10.1155/2015/714158
Review Article

Sauropus androgynus (L.) Merr. Induced Bronchiolitis Obliterans: From Botanical Studies to Toxicology

1Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2Biotechnology Research Centre, Malaysian Agricultural Research and Development Institute, P.O. Box 12301, 50774 Kuala Lumpur, Malaysia

Received 3 March 2015; Revised 29 July 2015; Accepted 4 August 2015

Academic Editor: Shun-Wan Chan

Copyright © 2015 Hamidun Bunawan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Padmavathi and M. P. Rao, “Nutritive value of Sauropus androgynus leaves,” Plant Foods for Human Nutrition, vol. 40, no. 2, pp. 107–113, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Singh, D. R. Singh, K. M. Salim, A. Srivastava, L. B. Singh, and R. C. Srivastava, “Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar Islands,” International Journal of Food Sciences and Nutrition, vol. 62, no. 7, pp. 765–773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. E. Bender and K. S. Ismail, “Nutritive value and toxicity of Sauropus androgynous,” The Proceedings of the Nutrition Society, vol. 32, no. 2, pp. 79A–80A, 1973. View at Google Scholar · View at Scopus
  4. R.-S. Lai, A. A. Chiang, M.-T. Wu et al., “Outbreak of bronchiolitis obliterans associated with consumption of Sauropus androgynus in Taiwan,” The Lancet, vol. 348, no. 9020, pp. 83–85, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-L. Wu, W.-H. Hsu, C.-D. Chiang et al., “Lung injury related to consuming Sauropus androgynus vegetable,” Journal of Toxicology—Clinical Toxicology, vol. 35, no. 3, pp. 241–248, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-L. Wu, W.-H. Hsu, and C.-D. Chiang, “The effect of large-dose prednisolone on patients with obstructive lung disease associated with consuming Sauropus androgynus,” Chinese Medical Journal, vol. 61, no. 1, pp. 34–38, 1998. View at Google Scholar · View at Scopus
  7. N. S. Wang, Y. L. Chang, and Y. T. Yao, “Fibromuscular obliteration of bronchial arteries with segmental necrosis of small bronchi following consumption of Sauropus androgynus (SA),” The FASEB Journal, vol. 11, no. 3, article A123, 1997. View at Google Scholar · View at Scopus
  8. J.-S. Wang, H.-H. Tseng, R.-S. Lai, H.-K. Hsu, and L.-P. Ger, “Sauropus androgynus-constrictive obliterative bronchitis/bronchiolitis—histopathological study of pneumonectomy and biopsy specimens with emphasis on the inflammatory process and disease progression,” Histopathology, vol. 37, no. 5, pp. 402–410, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Yamamoto, I. Higashimoto, K. Oonakahara et al., “Clinial feature of bronchiolitis obliterans associated with consumption of Sauropus androgynus,” Japanese Journal of Chest Diseases, vol. 63, no. 10, pp. 921–929, 2004. View at Google Scholar · View at Scopus
  10. P. T. Li, H. Chiu, J. Ma et al., “Euphorbiaceae,” in Flora of China 11, Z. Y. Wu, P. H. Rave, and D. Y. Hong, Eds., pp. 163–314, Science Press, Beijing, China, Missouri Botanical Garden Press, St. Louis, Mo, USA, 2008. View at Google Scholar
  11. S. Soka, H. Alam, N. Boenjamin, T. W. Agustina, and M. T. Suhartono, “Effect of Sauropus androgynus leaf extracts on the expression of prolactin and oxytocin genes in lactating BALB/C Mice,” Journal of Nutrigenetics and Nutrigenomics, vol. 3, no. 1, pp. 31–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Andarwulan, D. Kurniasih, R. A. Apriady, H. Rahmat, A. V. Roto, and B. W. Bolling, “Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables,” Journal of Functional Foods, vol. 4, no. 1, pp. 339–347, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Benjapak, P. Swatsitang, and S. Tanpanich, “Determination of antioxidant capacity and nutritive values of Pak-Wanban (Sauropus androgynus L. Merr.),” Khon-Kean University Science Journal, vol. 36, pp. 279–289, 2008. View at Google Scholar
  14. V. Senthamarai Selvi and A. Baskar, “Evaluation of bioactive components and antioxidant activity of Sauropus androgynus plant extracts using GC-MS analysis,” International Journal of Pharmaceutical Sciences Review and Research, vol. 12, no. 2, pp. 65–67, 2012. View at Google Scholar · View at Scopus
  15. A. Gireesh, H. Harsha, H. Pramod, and S. D. Kholkute, “Pharmacognostic and preliminary phytochemical analysis of Sauropus androgynus (L) Merr. leaf,” International Journal of Drug Development and Research, vol. 5, no. 1, pp. 321–325, 2013. View at Google Scholar · View at Scopus
  16. P.-H. Wang and S.-S. Lee, “Active chemical constituents from Sauropus androgynus,” Journal of the Chinese Chemical Society, vol. 44, no. 2, pp. 145–149, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. S.-F. Yu, C.-T. Shun, T.-M. Chen, and Y.-H. Chen, “3-O-β-d-gucosyl-16-β-d-glucosyl-kaempferol isolated from Sauropus androgynus reduces body weight gain in Wistar rats,” Biological & Pharmaceutical Bulletin, vol. 29, no. 12, pp. 2510–2513, 2006. View at Publisher · View at Google Scholar
  18. T. Kanchanapoom, P. Chumsri, R. Kasai, H. Otsuka, and K. Yamasaki, “Lignan and megastigmane glycosides from Sauropus androgynus,” Phytochemistry, vol. 63, no. 8, pp. 985–988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Andarwulan, R. Batari, D. A. Sandrasari, B. Bolling, and H. Wijaya, “Flavonoid content and antioxidant activity of vegetables from Indonesia,” Food Chemistry, vol. 121, no. 4, pp. 1231–1235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. S. Selvi and A. Basker, “Phytochemical analysis and GC-MS profiling in the leaves of Sauropus androgynus (L.) MERR,” International Journal of Drug Development and Research, vol. 4, no. 1, pp. 162–167, 2012. View at Google Scholar · View at Scopus
  21. K. S. Sai and N. Srividya, “Blood glucose lowering effect of the leaves of Tinospora cordifolia and Sauropus androgynus in diabetic subjects,” Journal of Natural Remedies, vol. 2, no. 1, pp. 28–32, 2002. View at Google Scholar · View at Scopus
  22. A. Bhaskar, K. V. Ramesh, and Rajeshwari, “Wound healing profile of Sauropus androgynus in Wistar rats,” Journal of Natural Remedies, vol. 9, no. 2, pp. 159–164, 2009. View at Google Scholar · View at Scopus
  23. V. Senthamarai Selvi and A. Bhaskar, “Anti-inflammatory and analgesic activities of the Sauropus androgynous (L) merr. (Euphorbiaceae) plant in experimental animal models,” Der Pharmacia Lettre, vol. 4, no. 3, pp. 782–785, 2012. View at Google Scholar · View at Scopus
  24. K. H. Lee, A. M. Padzil, A. Syahida et al., “Evaluation of anti-inflammatory, antioxidant and antinociceptive activities of six Malaysian medicinal plants,” Journal of Medicinal Plant Research, vol. 5, no. 23, pp. 5555–5563, 2011. View at Google Scholar · View at Scopus
  25. S. Badami and K. P. Channabasavaraj, “In vitro antioxidant activity of thirteen medicinal plants of India's Western Ghats,” Pharmaceutical Biology, vol. 45, no. 5, pp. 392–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Wong, L. P. Leong, and J. H. William Koh, “Antioxidant activities of aqueous extracts of selected plants,” Food Chemistry, vol. 99, no. 4, pp. 775–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Gayathramma, K. V. Pavani, and R. Raji, “Chemical constituents and antimicrobial activities of certain plant parts of Sauropus androgynus L.,” International Journal of Pharma and Bio Sciences, vol. 3, no. 2, pp. 561–566, 2012. View at Google Scholar · View at Scopus
  28. V. N. Ariharan, V. N. M. Devi, and P. N. Prasad, “Antibacterial activity of Sauropus androgynus leaf extracts against some pathogenic bacteria,” International Journal of Chemical, Environmental and Pharmaceutical Research, vol. 6, no. 2, pp. 134–137, 2013. View at Google Scholar
  29. M. Paul and K. Beena Anto, “Antibacterial activity of Sauropus androgynus (L.) Merr.,” International Journal of Plant Sciences, vol. 6, no. 1, pp. 189–192, 2011. View at Google Scholar
  30. V. S. Selvi, G. Govindaraju, and A. Basker, “Antifungal activity and phytochemical analysis of Cympogon citratus, Sauropus androgynus and Spillanthes acmella plants,” World Journal of Fungal and Plant Biology, vol. 2, pp. 6–10, 2011. View at Google Scholar
  31. L. Xin, X. Xi-kun, H. Jun-ming et al., “Cytotoxicity and genotoxicity of Sauropus androgynous,” Chinese Journal of Health Laboratory Technology, vol. 9, pp. 1050–1053, 2006. View at Google Scholar
  32. S.-F. Yu, T.-M. Chen, and Y.-H. Chen, “Apoptosis and necrosis are involved in the toxicity of Sauropus androgynus in an in vitro study,” Journal of the Formosan Medical Association, vol. 106, no. 7, pp. 537–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Li, X. K. Xiong, J. M. Huang et al., “Cytotoxicity and genotoxicity of Sauropus androgynus,” Chinese Journal of Health Laboratory Technology, no. 9, 2006. View at Google Scholar
  34. O. Yunita, M. Yuwono, and F. A. Rantam, “In vitro cytotoxicity assay of Sauropus androgynus on human mesenchymal stem cells,” Toxicological and Environmental Chemistry, vol. 95, no. 4, pp. 679–686, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Sawahata, T. Ogura, A. Tagawa et al., “Sauropus androgynus-associated bronchiolitis obliterans of mother and daughter—autopsy report,” Respiratory Medicine CME, vol. 3, no. 4, pp. 214–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Hsu, H. Chang, and Y. Goan, “Intermediate results in Sauropus androgynus bronchiolitis obliterans patients after single-lung transplantation,” Transplantation Proceedings, vol. 32, no. 7, pp. 2422–2423, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Hsu, H. Chang, J. Su, Y. Goan, C. Wong, and M. Huang, “Lung transplantation in Sauropus androgynus consumption patients in Taiwan,” Transplantation Proceedings, vol. 30, no. 7, pp. 3393–3394, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Sakakibara, K. Taki, M. Kawanishi, Y. Shimada, and N. Ishikawa, “Lung vascular permeability enhanced by sympathetic nerve stimulation in rats,” Japanese Journal of Pharmacology, vol. 56, no. 3, pp. 391–395, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. G. U. Hung, S. C. Tsai, J. F. Hsieh, C. H. Kao, and S. J. Wang, “Detect bronchiolitis obliterans due to Sauropus androgynus vegetable ingestion: comparison with 99mTc-DTPA radioaerosol inhalation lung scintigraphy, high resolution computed tomography and pulmonary function testing,” Annals of Nuclear Medicine, vol. 13, pp. 197–202, 2000. View at Google Scholar
  40. S.-P. Luh, Y.-C. Lee, Y.-L. Chang, H.-D. Wu, S.-H. Kuo, and S.-H. Chu, “Lung transplantation for patients with end-stage Sauropus androgynus-induced bronchiolitis obliterans (SABO) syndrome,” Clinical Transplantation, vol. 13, no. 6, pp. 496–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-L. Chang, J.-S. Chen, H.-D. Wu, and Y.-C. Lee, “Retransplantation of contralateral lung in a patient with Sauropus androgynus-induced bronchobronchiolitis obliterans,” Transplantation Proceedings, vol. 32, no. 7, pp. 2432–2434, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Svetlecic, A. Molteni, and B. Herndon, “Bronchiolitis obliterans induced by intratracheal papaverine: a novel animal model,” Lung, vol. 182, no. 2, pp. 119–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. T.-J. Lin, C.-C. Lu, K.-W. Chen, and J.-F. Deng, “Outbreak of obstructive ventilatory impairment associated with consumption of Sauropus androgynus vegetable,” Journal of Toxicology—Clinical Toxicology, vol. 34, no. 1, pp. 1–8, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Cottin and J.-F. Cordier, “Bronchiolitis,” in Diffuse Lung Disease: A Practical Approach, pp. 343–363, Springer, 2nd edition, 2013. View at Google Scholar
  45. A. El-Gamel, E. Sim, P. Hasleton et al., “Transforming growth factor beta (TGF-β) and obliterative bronchiolitis following pulmonary transplantation,” Journal of Heart and Lung Transplantation, vol. 18, no. 9, pp. 828–837, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. H. M. Romanska, T. S. Ikonen, A. E. Bishop, R. E. Morris, and J. M. Polak, “Up-regulation of inducible nitric oxide synthase in fibroblasts parallels the onset and progression of fibrosis in an experimental model of post-transplant obliterative airway disease,” Journal of Pathology, vol. 191, no. 1, pp. 71–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Stevens, A Comprehensive Indonesian-English Dictionary, Penerbit Mizan Bandung, Bandung, Indonesia, 2004.
  48. H. C. Ong, Sayuran: Khasiat Makanan & Ubatan, Utusan Publications and Distributors, Kuala Lumpur, Malaysia, 2003.
  49. N. Arifin, Penyembuhan Semula Jadi Dengan Herba, PTS Litera Utama, Kuala Lumpur, Malaysia, 2005.
  50. Y. R. Chadha, The Wealth of India, Publication and Information Directorate, New Delhi, India, 1972.
  51. Y. Liu, C. O. Perera, and V. Suresh, “Comparison of three chosen vegetables with others from South East Asia for their lutein and zeaxanthin content,” Food Chemistry, vol. 101, no. 4, pp. 1533–1539, 2007. View at Publisher · View at Google Scholar · View at Scopus