Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2016 (2016), Article ID 2018704, 10 pages
http://dx.doi.org/10.1155/2016/2018704
Research Article

Regulation of MAPKs Signaling Contributes to the Growth Inhibition of 1,7-Dihydroxy-3,4-dimethoxyxanthone on Multidrug Resistance A549/Taxol Cells

1Department of Pharmacy, Yijishan Hospital, Wannan Medical College, Wuhu 241000, China
2Anhui Provincial Engineering Technology Research Center of Polysaccharides Drugs, Wuhu 241000, China

Received 31 January 2016; Revised 3 May 2016; Accepted 26 May 2016

Academic Editor: Shuang-En Chuang

Copyright © 2016 Jian Zuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. W. Li, Studies on the anti-inflammatory, immune and analgesic effects and their mechanisms of WWT [M.S. thesis], Guangxi University of Medicine, 2005.
  2. J. Zuo, Y. Xia, X. Li, and J.-W. Chen, “Xanthones from Securidaca inappendiculata exert significant therapeutic efficacy on adjuvant-induced arthritis in mice,” Inflammation, vol. 37, no. 3, pp. 908–916, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Zuo, Y. Xia, X. Li, O. Y. Zhen, and J.-W. Chen, “Selective modulation of MAPKs contribute to the anti-proliferative and anti-inflammatory activities of 1,7-dihydroxy-3,4-dimethoxyxanthone in rheumatoid arthritis-derived fibroblast-like synoviocyte MH7A cells,” Journal of Ethnopharmacology, vol. 168, pp. 248–254, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zuo, C.-L. Ji, Y. Xia, X. Li, and J.-W. Chen, “Xanthones as α-glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata,” Pharmaceutical Biology, vol. 52, no. 7, pp. 898–903, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zuo, K.-J. Mao, F. Yuan, X. Li, and J.-W. Chen, “Xanthones with anti-tumor activity isolated from Securidaca inappendiculata,” Medicinal Chemistry Research, vol. 23, no. 11, pp. 4865–4871, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Dela Cruz, L. T. Tanoue, and R. A. Matthay, “Lung cancer: epidemiology, etiology, and prevention,” Clinics in Chest Medicine, vol. 32, no. 4, pp. 605–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. L. Marshall and D. C. Christiani, “Genetic susceptibility to lung cancer-light at the end of the tunnel?” Carcinogenesis, vol. 34, no. 3, pp. 487–502, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Samet, E. Avila-Tang, P. Boffetta et al., “Lung cancer in never smokers: clinical epidemiology and environmental risk factors,” Clinical Cancer Research, vol. 15, no. 18, pp. 5626–5645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Liu, X. L. Lin, Q. Zhou et al., “The associations between two vital GSTs genetic polymorphisms and lung cancer risk in the Chinese population: evidence from 71 studies,” PLoS ONE, vol. 9, no. 7, Article ID e102372, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Crawford, “Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemotherapy,” Frontiers in Pharmacology, vol. 4, article 68, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. Z.-Y. Tang, Z.-X. Xia, S.-P. Qiao et al., “Four new cytotoxic xanthones from Garcinia nujiangensis,” Fitoterapia, vol. 102, pp. 109–114, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Tala, H. K. Wabo, G.-Z. Zeng, C.-J. Ji, P. Tane, and N.-H. Tan, “A prenylated xanthone and antiproliferative compounds from leaves of Pentadesma butyracea,” Phytochemistry Letters, vol. 6, no. 3, pp. 326–330, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Sousa, A. Paiva, N. Nazareth et al., “Bromoalkoxyxanthones as promising antitumor agents: synthesis, crystal structure and effect on human tumor cell lines,” European Journal of Medicinal Chemistry, vol. 44, no. 9, pp. 3830–3835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Senthilkumar, B.-A. Chen, X.-H. Cai, and R. Fu, “Anticancer and multidrug-resistance reversing potential of traditional medicinal plants and their bioactive compounds in leukemia cell lines,” Chinese Journal of Natural Medicines, vol. 12, no. 12, pp. 881–894, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Palmeira, M. H. Vasconcelos, A. Paiva, M. X. Fernandes, M. Pinto, and E. Sousa, “Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones,” Biochemical Pharmacology, vol. 83, no. 1, pp. 57–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. P. Wang, L. Wang, M. W. Chen, and Y. T. Wang, “Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression,” Chemico-Biological Interactions, vol. 235, pp. 76–84, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Genoux-Bastide, D. Lorendeau, E. Nicolle et al., “Identification of xanthones as selective killers of cancer cells overexpressing the ABC transporter MRP1,” ChemMedChem, vol. 6, no. 8, pp. 1478–1484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Stewart, “Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer,” Critical Reviews in Oncology/Hematology, vol. 75, no. 3, pp. 173–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Kuete, L. P. Sandjo, J. L. N. Ouete, H. Fouotsa, B. Wiench, and T. Efferth, “Cytotoxicity and modes of action of three naturally occurring xanthones (8-hydroxycudraxanthone G, morusignin i and cudraxanthone I) against sensitive and multidrug-resistant cancer cell lines,” Phytomedicine, vol. 21, no. 3, pp. 315–322, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. F. H. Groenendijk and R. Bernards, “Drug resistance to targeted therapies: déjà vu all over again,” Molecular Oncology, vol. 8, no. 6, pp. 1067–1083, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Do, M. Na, H. G. Kim et al., “Ilimaquinone induces death receptor expression and sensitizes human colon cancer cells to TRAIL-induced apoptosis through activation of ROS-ERK/p38 MAPK-CHOP signaling pathways,” Food and Chemical Toxicology, vol. 71, pp. 51–59, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-J. Changchien, Y.-J. Chen, C.-H. Huang, T.-L. Cheng, S.-R. Lin, and L.-S. Chang, “Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression,” Toxicology and Applied Pharmacology, vol. 284, no. 1, pp. 33–41, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-T. Kao, W.-C. Hsu, H.-T. Hu et al., “Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines,” Kaohsiung Journal of Medical Sciences, vol. 30, no. 7, pp. 323–330, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. E. K. Kim and E.-J. Choi, “Compromised MAPK signaling in human diseases: an update,” Archives of Toxicology, vol. 89, no. 6, pp. 867–882, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Barancık, V. Boháčová, J. Kvačkajová, S. Hudecová, O. Križanová, and A. Breier, “SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal Agent of P-glycoprotein-mediated multidrug resistance,” European Journal of Pharmaceutical Sciences, vol. 14, no. 1, pp. 29–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Wang, B. Lin, J. Wu, H. Zhang, and B. Wu, “Metformin inhibits the proliferation of A549/CDDP cells by activating p38 mitogen-activated protein kinase,” Oncology Letters, vol. 8, no. 3, pp. 1269–1274, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Zhang, M. Moerkens, S. Ramaiahgari et al., “Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes,” Breast Cancer Research, vol. 13, no. 3, article no. R52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. B.-N. Liu, H.-Q. Yan, X. Wu et al., “Apoptosis induced by benzyl isothiocyanate in gefitinib-resistant lung cancer cells is associated with Akt/MAPK pathways and generation of reactive oxygen species,” Cell Biochemistry and Biophysics, vol. 66, no. 1, pp. 81–92, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Jin, Y. Lu, Q. Li et al., “Down-regulation of the P-glycoprotein relevant for multidrug resistance by intracellular acidification through the crosstalk of MAPK signaling pathways,” International Journal of Biochemistry and Cell Biology, vol. 54, pp. 111–121, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Fey, D. R. Croucher, W. Kolch, and B. N. Kholodenko, “Crosstalk and signaling switches in mitogen-activated protein kinase cascades,” Frontiers in Physiology, vol. 3, article 355, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Vilgelm, J. X. Wei, M. B. Piazuelo et al., “ΔNp73α regulates MDR1 expression by inhibiting p53 function,” Oncogene, vol. 27, no. 15, pp. 2170–2176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Bähr, W. Wick, M. Weller et al., “Modulation of MDR/MRP by wild-type and mutant p53,” The Journal of Clinical Investigation, vol. 107, no. 5, pp. 643–646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. M. Wang, W. J. Wang, A. M. Wang, Y. L. Zang, and X. B. Li, “Study on the correlation between the expression of p53 and MDR in lung cancer,” Cancer Research and Clinic, vol. 14, pp. 18–20, 2002. View at Google Scholar
  34. M. Leão, C. Pereira, A. Bisio et al., “Discovery of a new small-molecule inhibitor of p53-MDM2 interaction using a yeast-based approach,” Biochemical Pharmacology, vol. 85, no. 9, pp. 1234–1245, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Chen, Y. Zhao, G. C. Halliday et al., “Structurally diverse MDM2-p53 antagonists act as modulators of MDR-1 function in neuroblastoma,” British Journal of Cancer, vol. 111, no. 4, pp. 716–725, 2014. View at Publisher · View at Google Scholar · View at Scopus