Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2016 (2016), Article ID 3803657, 9 pages
http://dx.doi.org/10.1155/2016/3803657
Research Article

Protective Effects of L-Malate against Myocardial Ischemia/Reperfusion Injury in Rats

Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

Received 17 October 2015; Accepted 22 December 2015

Academic Editor: José L. Ríos

Copyright © 2016 Shiao Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Mathers, T. Boerma, and D. Ma Fat, “Global and regional causes of death,” British Medical Bulletin, vol. 92, no. 1, pp. 7–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. V. Songco and S. J. Brener, “Initial strategy of revascularization versus optimal medical therapy for improving outcomes in ischemic heart disease: a review of the literature,” Current Cardiology Reports, vol. 14, no. 4, pp. 397–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Piper, D. García-Dorado, and M. Ovize, “A fresh look at reperfusion injury,” Cardiovascular Research, vol. 38, no. 2, pp. 291–300, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. A. T. Turer and J. A. Hill, “Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy,” American Journal of Cardiology, vol. 106, no. 3, pp. 360–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. X.-Y. Wang, W.-P. Dong, S.-H. Bi et al., “Protective effects of osthole against myocardial ischemia/reperfusion injury in rats,” International Journal of Molecular Medicine, vol. 32, no. 2, pp. 365–372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Ji, B. K.-H. Tan, Y. C. Zhu, W. Linz, and Y. Z. Zhu, “Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats,” Life Sciences, vol. 73, no. 11, pp. 1413–1426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Bolli, L. Becker, G. Gross, R. Mentzer Jr., D. Balshaw, and D. A. Lathrop, “Myocardial protection at a crossroads: the need for translation into clinical therapy,” Circulation Research, vol. 95, no. 2, pp. 125–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ashrafian, G. Czibik, M. Bellahcene et al., “Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway,” Cell Metabolism, vol. 15, no. 3, pp. 361–371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zeng, J. Wu, Q. Wu, and J. Zhang, “L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats,” Physiological Research, vol. 64, no. 1, pp. 71–78, 2015. View at Google Scholar
  10. K. K. Dharmappa, R. V. Kumar, A. Nataraju, R. Mohamed, H. V. Shivaprasad, and B. S. Vishwanath, “Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2,” Planta Medica, vol. 75, no. 3, pp. 211–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Takada, T. Nakane, K. Masuda, and H. Ishii, “Ursolic acid and oleanolic acid, members of pentacyclic triterpenoid acids, suppress TNF-α-induced E-selectin expression by cultured umbilical vein endothelial cells,” Phytomedicine, vol. 17, no. 14, pp. 1114–1119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Wang, X.-L. Ye, R. Liu et al., “Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases,” Chemico-Biological Interactions, vol. 184, no. 3, pp. 328–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Varì, M. D'Archivio, C. Filesi et al., “Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation inmurine macrophages,” The Journal of Nutritional Biochemistry, vol. 22, no. 5, pp. 409–417, 2011. View at Publisher · View at Google Scholar
  14. J.-L. Wu, Q.-P. Wu, X.-F. Yang et al., “L-malate reverses oxidative stress and antioxidative defenses in liver and heart of aged rats,” Physiological Research, vol. 57, no. 2, pp. 261–268, 2008. View at Google Scholar · View at Scopus
  15. K. Raedschelders, D. M. Ansley, and D. D. Y. Chen, “The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion,” Pharmacology and Therapeutics, vol. 133, no. 2, pp. 230–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Bell and D. M. Yellon, “There is more to life than revascularization: therapeutic targeting of myocardial ischemia/reperfusion injury,” Cardiovascular Therapeutics, vol. 29, no. 6, pp. e67–e79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Akhlaghi and B. Bandy, “Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 3, pp. 309–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Mu, G. He, Y. Cheng, X. Li, B. Xu, and G. Du, “Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro,” Pharmacology Biochemistry and Behavior, vol. 92, no. 4, pp. 642–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. J. Lee, Y. H. Noh, D. Y. Lee et al., “Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells,” European Journal of Cell Biology, vol. 84, no. 11, pp. 897–905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. H. Vu, K. Liu, D. M. Lloyd-Jonesa et al., “Favorable levels of all major cardiovascular risk factors at younger ages and high-sensitivity c-reactive protein 39 years later—the Chicago healthy aging study,” Preventive Medicine Reports, vol. 2, pp. 235–240, 2015. View at Publisher · View at Google Scholar
  21. J. E. Jordan, Z.-Q. Zhao, and J. Vinten-Johansen, “The role of neutrophils in myocardial ischemia-reperfusion injury,” Cardiovascular Research, vol. 43, no. 4, pp. 860–878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Steffens, F. Montecucco, and F. Mach, “The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury,” Thrombosis and Haemostasis, vol. 102, no. 2, pp. 240–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Vinten-Johansen, R. Jiang, J. G. Reeves, J. Mykytenko, J. Deneve, and L. J. Jobe, “Inflammation, proinflammatory mediators and myocardial ischemia-reperfusion injury,” Hematology/Oncology Clinics of North America, vol. 21, no. 1, pp. 123–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Kleinbongard, G. Heusch, and R. Schulz, “TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure,” Pharmacology and Therapeutics, vol. 127, no. 3, pp. 295–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. G. Frangogiannis, C. W. Smith, and M. L. Entman, “The inflammatory response in myocardial infarction,” Cardiovascular Research, vol. 53, no. 1, pp. 31–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Xiaohui, Z. Xinfeng, Z. Xin, W. Shixiang, W. Yinmao, and Z. Jianbin, “Determination of the main bioactive metabolites of Radix Salvia miltiorrhizae in Compound Danshen Dripping Pills and the tissue distribution of Danshensu in rabbit by SPE-HPLC-MSn,” Journal of Separation Science, vol. 30, no. 6, pp. 851–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. I. M. Fearon and S. P. Faux, “Oxidative stress and cardiovascular disease: novel tools give (free) radical insight,” Journal of Molecular and Cellular Cardiology, vol. 47, no. 3, pp. 372–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Rakotovao, C. Berthonneche, A. Guiraud et al., “Ethanol, wine, and experimental cardioprotection in ischemia/reperfusion: role of the prooxidant/antioxidant balance,” Antioxidants and Redox Signaling, vol. 6, no. 2, pp. 431–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Wu, J. G. Hecker, and N. Chiamvimonvat, “Antioxidant enzyme gene transfer for ischemic diseases,” Advanced Drug Delivery Reviews, vol. 61, no. 4, pp. 351–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. X.-L. Chen, G. Dodd, S. Thomas et al., “Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 290, no. 5, pp. H1862–H1870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. L. Slocum and T. W. Kensler, “Nrf2: control of sensitivity to carcinogens,” Archives of Toxicology, vol. 85, no. 4, pp. 273–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Takaya, T. Suzuki, H. Motohashi et al., “Validation of the multiple sensor mechanism of the Keap1-Nrf2 system,” Free Radical Biology and Medicine, vol. 53, no. 4, pp. 817–827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Soyalan, J. Minn, H. J. Schmitz et al., “Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver,” European Journal of Nutrition, vol. 50, no. 2, pp. 135–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. K. Bryan, A. Olayanju, C. E. Goldring, and B. K. Park, “The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation,” Biochemical Pharmacology, vol. 85, no. 6, pp. 705–717, 2013. View at Publisher · View at Google Scholar
  35. W. Miao, L. Hu, P. J. Scrivens, and G. Batist, “Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes,” The Journal of Biological Chemistry, vol. 280, no. 21, pp. 20340–20348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Nair, S. T. Doh, J. Y. Chan, A.-N. Kong, and L. Cai, “Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis,” British Journal of Cancer, vol. 99, no. 12, pp. 2070–2082, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Yang, Y. Yao, G. Eades, Y. Zhang, and Q. Zhou, “MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism,” Breast Cancer Research and Treatment, vol. 129, no. 3, pp. 983–991, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Sangokoya, M. J. Telen, and J.-T. Chi, “MicroRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease,” Blood, vol. 116, no. 20, pp. 4338–4348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Numazawa, M. Ishikawa, A. Yoshida, S. Tanaka, and T. Yoshida, “Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress,” The American Journal of Physiology—Cell Physiology, vol. 285, no. 2, pp. C334–C342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. Jain and A. K. Jaiswal, “GSK-3β acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2,” The Journal of Biological Chemistry, vol. 282, no. 22, pp. 16502–16510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Chen, Z. Sun, X.-J. Wang et al., “Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response,” Molecular Cell, vol. 34, no. 6, pp. 663–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Li, H. Liu, J.-S. Zhou et al., “Caveolin-1 inhibits expression of antioxidant enzymes through direct interaction with nuclear erythroid 2 p45-related factor-2 (Nrf2),” The Journal of Biological Chemistry, vol. 287, no. 25, pp. 20922–20930, 2012. View at Publisher · View at Google Scholar · View at Scopus