Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2016 (2016), Article ID 7379146, 12 pages
http://dx.doi.org/10.1155/2016/7379146
Research Article

Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China

Received 19 April 2016; Accepted 29 May 2016

Academic Editor: Caigan Du

Copyright © 2016 Jin Tao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Shaver, B. S. Grove, J. K. Clune, N. Mackman, L. B. Ware, and J. A. Bastarache, “Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury,” Scientific Reports, vol. 6, Article ID 22249, 9 pages, 2016. View at Publisher · View at Google Scholar
  2. L. Fang, Y. Gao, F. Liu, R. Hou, R.-L. Cai, and Y. Qi, “Shuang-Huang-Lian attenuates lipopolysaccharide-induced acute lung injury in mice involving anti-inflammatory and antioxidative activities,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, Article ID 283939, 9 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Huang, J. Tang, H. Cai et al., “Anti-inflammatory effects of monoammonium glycyrrhizinate on lipopolysaccharide-induced acute lung injury in mice through regulating nuclear factor-kappa B signaling pathway,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, Article ID 272474, 8 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. E.-C. Liao, C.-W. Hsieh, C.-Y. Chang et al., “Enhanced allergic inflammation of Der p 2 affected by polymorphisms of MD-2 promoter,” Allergy, Asthma & Immunology Research, vol. 7, no. 5, pp. 497–506, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Y. Cha, J. Y. Jung, J. Y. Jung et al., “Inhibitory effects of traditional herbal formula Pyungwi-San on inflammatory response in vitro and in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 630198, 19 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Levitt and M. A. Matthay, “Clinical review: early treatment of acute lung injury—paradigm shift toward prevention and treatment prior to respiratory failure,” Critical Care, vol. 16, no. 3, pp. 223–233, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. Shan, X. S. Zhou, J. Y. Xu et al., “Research advances of Jiegeng Tang,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 18, no. 19, pp. 304–306, 2012. View at Google Scholar
  8. H. Zhao, M. Zhao, Y. Wang, F. Li, and Z. Zhang, “Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats,” The Journal of Histochemistry & Cytochemistry, vol. 64, no. 2, pp. 125–137, 2016. View at Publisher · View at Google Scholar
  9. W. W. Tao, Q. Su, H. Q. Wang et al., “Platycodin D attenuates acute lung injury by suppressing apoptosis and inflammation in vivo and in vitro,” International Immunopharmacology, vol. 27, no. 1, pp. 138–147, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Ji, F. Zhu, X. Liu, Q. Li, and S.-B. Su, “Recent advance in applications of proteomics technologies on traditional chinese medicine research,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, Article ID 983139, 13 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Sun, A. H. Zhang, G. L. Yan et al., “Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 75, pp. 173–179, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. W. Yin, P. Wang, A. H. Zhang, H. Sun, X. Wu, and X. Wang, “Ultra-performance LC-ESI/quadrupole-TOF MS for rapid analysis of chemical constituents of Shaoyao-Gancao decoction,” Journal of Separation Science, vol. 36, no. 7, pp. 1238–1246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Nyakudya, J. H. Jeong, N. K. Lee, and Y.-S. Jeong, “Platycosides from the roots of Platycodon grandiflorum and their health benefits,” Preventive Nutrition and Food Science, vol. 19, no. 2, pp. 59–68, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Tao, Y. Y. Hou, X. Y. Ma et al., “An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonicaFritillaria usuriensis dropping pills for pulmonary diseases,” BMC Complementary and Alternative Medicine, vol. 16, pp. 4–13, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Bivas-Benita, R. Zwier, H. E. Junginger, and G. Borchard, “Non-invasive pulmonary aerosol delivery in mice by the endotracheal route,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 61, no. 3, pp. 214–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Huo, N. Chen, G. Chi et al., “Traditional medicine alpinetin inhibits the inflammatory response in Raw 264.7 cells and mouse models,” International Immunopharmacology, vol. 12, no. 1, pp. 241–248, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Y. Wang, H. Zhang, L. L. Chen, L. Shan, G. Fan, and X. Gao, “Liquorice, a unique ‘guide drug’ of traditional Chinese medicine: a review of its role in drug interactions,” Journal of Ethnopharmacology, vol. 150, no. 3, pp. 781–790, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Chun, I. J. Ha, and Y. S. Kim, “Antiproliferative and apoptotic activities of triterpenoid saponins from the roots of Platycodon grandiflorum and their structure-activity relationships,” Planta Medica, vol. 79, no. 8, pp. 639–645, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Y. Kim, Y. P. Hwang, D. H. Kim et al., “Inhibitory effect of the saponins derived from roots of Platycodon grandiflorum on carrageenan-induced inflammation,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 4, pp. 858–864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Zhao, M. Chen, Z. Jiang et al., “Platycodin-D induced autophagy in non-small cell lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathways,” Journal of Cancer, vol. 6, no. 7, pp. 623–631, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. K. R. Patil, P. Mohapatra, H. M. Patel et al., “Pentacyclic triterpenoids inhibit IKKβ mediated activation of NF-κB pathway: in silico and in vitro evidences,” PLoS ONE, vol. 10, no. 5, Article ID e0125709, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. T.-C. Kao, M.-H. Shyu, and G.-C. Yen, “Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation,” Journal of Agricultural and Food Chemistry, vol. 58, no. 15, pp. 8623–8629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. S. Teng, Q. F. Meng, J. H. Lu et al., “Liquiritin modulates ERK- and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells,” Molecular Medicine Reports, vol. 10, no. 2, pp. 818–824, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. X.-L. Yang, D. Liu, K. Bian, and D.-D. Zhang, “Study on in vitro anti-inflammatory activity of total flavonoids from Glycyrrhizae Radix et Rhizoma and its ingredients,” Chinese Journal of Chinese Material Media, vol. 38, no. 1, pp. 99–104, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. C.-P. Wan, L.-X. Gao, L.-F. Hou et al., “Astragaloside II triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity,” Acta Pharmacologica Sinica, vol. 34, no. 4, pp. 522–530, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Seger and E. G. Krebs, “The MAPK signaling cascade,” The FASEB Journal, vol. 9, no. 9, pp. 726–735, 1995. View at Google Scholar · View at Scopus
  27. Z.-A. Chen, J.-L. Wang, R.-T. Liu et al., “Liquiritin potentiate neurite outgrowth induced by nerve growth factor in PC12 cells,” Cytotechnology, vol. 60, no. 1–3, pp. 125–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Wang, T. Q. Guo, Z. Y. Wang et al., “ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells,” Brazilian Journal of Medical and Biological Research, vol. 47, no. 9, pp. 773–779, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. A. E. Saunders and P. Johnson, “Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45,” Cellular Signalling, vol. 22, no. 3, pp. 339–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Barreiro, M. Yáñez-Mó, J. M. Serrador et al., “Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes,” Journal of Cell Biology, vol. 157, no. 7, pp. 1233–1245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. F. Yang, T. E. Sciuto, A. M. Dvorak, R. M. Froio, R. Alon, and F. W. Luscinskas, “ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow,” Blood, vol. 106, no. 2, pp. 584–592, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. C. F. Lu, J. Takagi, and T. A. Springer, “Association of the membrane proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state,” The Journal of Biological Chemistry, vol. 276, no. 18, pp. 14642–14648, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Sadhu, E. A. S. Harris, and D. E. Staunton, “Enhancement of Natural Killer cell cytotoxicity by a CD18 integrin-activating antibody,” Biochemical and Biophysical Research Communications, vol. 358, no. 3, pp. 938–941, 2007. View at Publisher · View at Google Scholar · View at Scopus