Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017, Article ID 1753673, 7 pages
https://doi.org/10.1155/2017/1753673
Research Article

Medicinal Plants from Northeastern Brazil against Alzheimer’s Disease

1Centro de Ciências Sociais Saúde e Tecnologia, Curso de Enfermagem, Universidade Federal do Maranhão, Rua Urbano Santos, s/n, Centro, 65900-410 Imperatriz, MA, Brazil
2Departamento de Química, Laboratório de Química e Produtos Naturais, Universidade Estadual do Ceará, Campus do Itaperi, Av. Dr. Silas Munguba 1.700, 60.714-903 Fortaleza, CE, Brazil
3Centro de Ciências Sociais Saúde e Tecnologia, Curso de Engenharia de Alimentos, Universidade Federal do Maranhão, Rua Urbano Santos, s/n, Centro, 65900-410 Imperatriz, MA, Brazil
4Núcleo de Pesquisa em Sanidade Animal, Universidade Estadual do Ceará, Campus do Itaperi, Av. Dr. Silas Munguba 1.700, 60.714-903 Fortaleza, CE, Brazil
5Laboratório de Química e Produtos Naturais, Universidade Estadual do Ceará, Campus do Itaperi, Av. Dr. Silas Munguba 1.700, 60.714-903 Fortaleza, CE, Brazil
6Centro de Ciências Sociais Saúde e Tecnologia, Curso de Licenciatura em Ciências Naturais/Biologia, Universidade Federal do Maranhão, Rua Urbano Santos, s/n, Centro, 65900-410 Imperatriz, MA, Brazil
7Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Campus do Itaperi, Av. Dr. Silas Munguba 1.700, 60.714-903 Fortaleza, CE, Brazil

Correspondence should be addressed to Alexandre Batista Penido; moc.liamg@amfuodinep

Received 10 January 2017; Accepted 2 February 2017; Published 21 February 2017

Academic Editor: Ayodele J. Akinyemi

Copyright © 2017 Alexandre Batista Penido et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Alzheimer’s disease (AD) has been linked with oxidative stress, acetylcholine deficiency in the brain, and inflammatory processes. In the northeast region of Brazil, various plants are used to treat several diseases associated with these processes; then an antioxidant test was performed with those plants in a previous work and twelve species with higher antioxidant activity were selected for AChE inhibition evaluation. The phenolic compounds content was determined by Folin–Ciocalteu test and flavonoid content with AlCl3 reagent using UV-visible spectrophotometry. The antioxidant activity was assessed analyzing the inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) and by the β-carotene/linoleic acid system and acetylcholinesterase inhibition using qualitative and quantitative tests. The combination of better acetylcholinesterase inhibitory and antioxidant activities pointed out six species, in descending order, as the best potential sources of therapeutic agents against AD: Hancornia speciosa > Myracrodruon urundeuva > Copaifera langsdorffii > Stryphnodendron coriaceum > Psidium guajava > Mangifera indica. Besides, the phenolic compounds in the species probably contribute to these activities. However, further pharmacological studies to assess the specific applications of these plants against AD are required to confirm these results.

1. Introduction

AD was first described in 1906 by the German physician Alois Alzheimer. It is the most common form of dementia and affects 24 millions of people worldwide. During the progression of AD, the destruction of brain cells leads to gradual memory loss, deterioration of intellectual function, loss of speech, disorientation, and difficulty walking. Factors involved in AD include acetylcholine deficiency, free radicals, and brain tissue inflammation. There is currently no cure for AD, but several drugs aimed at delaying its progression are available, and new and more effective drugs are being investigated [1].

A promise approach in the treatment of Alzheimer’s disease (AD) is the use of natural products, which increase acetylcholine levels necessary for memory function [2]. Acetylcholine is a neurotransmitter that is essential for healthy memory, and mental health problems that involve memory loss are directly or indirectly related to acetylcholine. Low levels of this neurotransmitter have been shown to have an important role in the pathogenesis of AD [3]. As a result, many studies aimed at finding treatments for memory changes, such as those that occur in AD, are focused on acetylcholine. AChEIs inhibit acetylcholinesterase, the enzyme responsible for the breakdown of acetylcholine. Studies on plants with acetylcholinesterase inhibitory activity are currently underway, with the aim of discovering new active compounds that are less costly and have fewer adverse side effects than synthetic drugs [4].

Free radicals also a play a role in many common diseases, including AD. Therefore, plant extracts with antioxidant activity also have potential therapeutic value. For example, lipid peroxidation is a reaction mediated by free radicals, in which fatty acid breakdown occurs in cell membranes, thereby reducing membrane fluidity. This process, in association with other events, can lead to pathological conditions such as heart disease, some types of cancer, brain ischemia, and inflammatory conditions [5]. Natural antioxidants obtained from foods, such as phenolic compounds and carotenoids, inhibit lipid peroxidation via their free-radical scavenging activity. The intake of fruits that are rich in phenolic compounds also reduces the risk of developing various types of cancer [6, 7].

A significant reduction in the incidence of chronic and degenerative diseases has been observed in populations with diets comprising mainly natural foods that contain phenolic compounds with antioxidant activity, such as fruits and cereal. The most common antioxidants present in the foods in our diet are vitamin C, vitamin E, selenium, and carotenoids, and in addition phenolic compounds such as phenolic acids and flavonoids also contribute to antioxidant activity [8].

Plants that have positive effects on cognitive disorders, as well as strong acetylcholinesterase inhibitory, anti-inflammatory, and antioxidant activities, are of potential clinical interest for the treatment of AD ([9, 10]).

In this study, an ethnobotanical survey of the main plants used in the northeast region of Brazil was conducted to select medicinal plants that are potential sources of therapeutic agents against AD [11]. Sixty species were found and tested for antioxidant activity. Subsequently, the 34 species that exhibited the highest antioxidant activity were selected, and their phenol and flavonoid content was determined. The plants that yielded the best results were then subjected to acetylcholinesterase inhibition tests. The present study assessed the relationships between these properties in the plants, with the aim of discovering new phytotherapics that can be used in the treatment of AD.

2. Materials and Methods

2.1. Collection and Preparation of Plant Extracts

The ethnobotanical and ethnopharmacological study was approved on October 1, 2014 (approval number: 814.666) and was conducted between October 2014 and March 2015. The aim of the study was to investigate some of the main plant species used for medicinal purposes in the northeast region of Brazil, especially with regard to memory. The species were identified morphologically by Professor Ana Zélia Silva, Department of Pharmacy of the Federal University of Maranhão, and were deposited in the Atticus Seabra Herbarium (Table 1). The plant samples were dried, ground in cutting mills, macerated with 70% ethanol for 7 days, filtered, evaporated in a rotary evaporator under reduced pressure, frozen, and freeze-dried. All of the plant names are listed at http://www.theplantlist.org.

Table 1: Selected medicinal plants from Northeastern Brazil with high antioxidant activity.
2.2. Phytochemical Analysis
2.2.1. Determination of Total Phenol Content

Total phenol content was determined using the Folin–Ciocalteu method, with some modifications [12]. The sample was dissolved in methanol, and Folin–Ciocalteu reagent, distilled water, and 15% sodium carbonate were added. After incubation in the dark for 2 hours, the absorbance was measured at 750 nm using a UV/VIS spectrophotometer. The results are expressed as the gallic acid equivalent per gram of extract (mg GAE/g) based on a linear equation for a standard curve prepared with gallic acid (0.1–0.5 mg/mL).

2.2.2. Determination of Flavonoid Content

The flavonoid content was determined using the method described by Funari and Ferro [13]. A volume of 2 mL of the extract solution (2 mg/mL) was used, to which 1 mL of 2.5% AlCl3 solution was added. After incubation in the dark for 30 minutes, the absorbance was measured at 425 nm. A yellow color indicated the presence of flavonoids. The flavonoid content was calculated and expressed in mg of quercetin equivalent per gram of extract (mg EQ/g), based on a standard curve prepared with quercetin.

2.2.3. Assessment of Antioxidant Activity via DPPH Radical Reduction

Antioxidant activity was assessed using a previously described method [14], with some modifications. Dilution series of the samples and control, in methanol, were prepared, to obtain the following concentrations: 3.125, 6.25, 12.5, 25.0, 50.0, and 100 μg/mL. Then, 2 mL of DPPH (0.004%) was added. Methanol was used as a negative control. After a period of 30 minutes in the dark, the absorbance was measured at 517 nm using a UV-VIS spectrophotometer. The percentage inhibition was calculated according to the equation: IP% = [(absorbance of DPPH − absorbance of the extract)/absorbance of DPPH] × 100. The IC50 values were determined by linear regression of the plotted data.

2.2.4. Assessment of Antioxidant Activity by the ABTS Method

Antioxidant activity was assessed using the ABTS method, as described by Re et al. [15]. The ABTS solution (7 mM, 5 mL) was mixed with 88 μL of potassium persulfate (140 mM), agitated, and kept in the dark at room temperature for 16 hours. Then, 1 mL of this solution was added to 99 mL of ethanol, and the absorbance was measured at 734 nm. A series of solutions of the plant extracts with decreasing concentrations was prepared, and 3.0 mL of ABTS solution was added to 30 μL of these solutions after 6 minutes. The absorbance was then measured at 734 nm. The IC50 values were calculated by linear regression.

2.2.5. Assessment of Antioxidant Activity by the β-Carotene/Linoleic Acid Method

The β-carotene/linoleic acid method was used according to Wettasinghe and Shahidi [39] in which 1 mg of β-carotene was diluted in 5 mL of chloroform. Aerated water, 200 μL of Tween 40, 20 μL of linoleic acid, and 2 mL of β-carotene were used to prepare the β-carotene solution. The spectrophotometer was adjusted to a wavelength of 470 nm. For the stock solution, 12.5 mg of sample was dissolved in 25 mL of methanol. After the final concentrations were obtained, the β-carotene solution (different concentrations) and the blank were placed in cuvettes. The absorbance was measured; then the solutions were placed in a water bath for 2 hours, and the absorbance was measured again. The calculation was performed using the following formula: IC% = 1 − [(absorbance of the sample − absorbance of the sample after 2 hours)/(absorbance of the blank − absorbance of the blank after 2 hours)] × 100. The IC50 values were calculated by linear regression.

2.2.6. Determination of Acetylcholinesterase Inhibitory Activity

The acetylcholinesterase inhibitory activity was qualitatively assessed using the method by Ellman et al. [40] adapted for thin layer chromatography [41] and was quantitatively measured using an Elisa BIOTEK microplate reader (model ELX 800 with Gen5 V2.04.11 software), based on the method by Ellman et al. [40] modified by Trevisan et al. [42].

2.2.7. Statistical Analysis

All of the experiments were performed in triplicate, and the results were expressed as the mean ± standard deviation. The differences between the values were examined using analysis of variance (ANOVA), and the results were compared using the Tukey test at a 95% confidence level. GraphPad Prism software version 5.01 was used.

3. Results and Discussion

The present study began with an ethnobotanical investigation of 60 species, to identify active agents that may be used in the treatment of several diseases, including AD [11]. AD is one of the most prevalent neurodegenerative diseases in humans, and its cause is multifactorial, but free radicals and acetylcholinesterase are known to be strongly associated with this disease. Therefore, the aim of this study was to analyze the main medicinal plants used in the northeast region of Brazil and determine their antioxidant activities, phenolic compound content, and flavonoid content, and acetylcholinesterase inhibitory activity.

Phenolic compounds, flavonoids, and tannins are the major antioxidant agents and free-radical scavengers in plants. Several methods can be used to assess the antioxidant activity of a sample; however, one method alone cannot provide precise enough data to determine a plant’s free-radical scavenging or prevention capacity or the consequent amount of lipid oxidation, especially in plant extracts that are composed of several chemical compounds that act via different mechanisms [43]. As a result, in this study, the species were tested using the DPPH, ABTS, and β-carotene/linoleic acid methods.

Table 1 identifies the main species assessed in this study. Their scientific and common names are given, along with their voucher numbers, the parts of the plant typically used, and their traditional uses and biological and pharmacological reports.

Table 2 shows the results of antioxidant tests, phenols, and flavonoid content an AChE inhibition. In bold, six plant species were marked since they were chosen as being better candidates as anti-AChE agents. This choice took into account the combination of the two kinds of actions: H. speciosa, C. langsdorffii, M. urundeuva, M. indica, P. guajava, and S coriaceum.

Table 2: Antioxidant activity (DPPH, ABTS, and β-carotene/linoleic acid tests), phenolics content, flavonoid content, and acetylcholinesterase inhibitory activity of selected medicinal plant species used in the northeast region of Brazil.

The species that exhibited the best antioxidant activity in the three tests and anticholinesterase activity was H. speciosa. This plant is currently used in the treatment of several conditions, including fractures, inflammation, ulcers, pain, hypertension, and diabetes, and its effects are probably attributable to the antioxidant capacity of compounds present, such as phenols, tannins, flavones, flavonoids, leucoanthocyanidins, and alkaloids [44]. H. speciosa also exhibited the best results among all the species tested in terms of anticholinesterase activity. This activity, combined with its high content of phenols and flavonoids, means H. speciosa may be the best source among the assessed species for research into new therapeutic agents against several diseases, including AD.

B. forficata is currently used as a hypoglycemic in the treatment of diabetes. Recent studies have demonstrated that insulin metabolism is important in the AD signaling pathway, and there is evidence that alteration of insulin metabolism plays a role in the molecular pathogenesis of AD [45]. Patients with AD have lower levels of insulin, and when these levels are corrected, there is an improvement in cognitive processes [4], further supporting the idea that B. forficata has potential in the treatment of AD. This plant also had good anticholinesterase activity and a high antioxidant capacity and therefore could be another source of agents against AD. B. forficata also exhibits a high flavonoid content, which confirms that this species is a potential source of promising natural resources for studies on new AD treatment strategies [46].

C. langsdorffii and compounds isolated from it are reported as gastric mucosal protective agents that act by increasing the production of mucus [47]. Because this species exhibited high acetylcholinesterase inhibitory activity, this mechanism may contribute to the plant’s ability to increase acetylcholine, a neurotransmitter involved in several biological processes, including the production of mucus, healing, inflammation, and gastric ulcers.

M. indica exhibits the highest flavonoid content among the species tested, as well as high antioxidant activity, which probably contributes to its anti-inflammatory properties [30], and high anticholinesterase activity, as was demonstrated in the present study. These data confirm the results of other studies with this species, which have shown it to have anticholinesterase, anti-inflammatory, antioxidant, and antidiabetic activities. These pharmacological activities probably result from the phenolic compounds that have been isolated in this species, such as mangiferin, and suggest that M. indica is another promising source of agents for the treatment and prevention of AD [48]. Recent studies on cholinergic dysfunction, oxidative stress, and their relationship with memory have demonstrated that ethanol extracts of the fruits of M. indica improved memory function [49]. M. indica fruit extracts have potential neuroprotective activity and improve cognitive impairment, because they reduce oxidative stress and increase cholinergic function [49].

M. urundeuva bark tinctures are largely used as anti-inflammatory phytotherapics and the action is explained due to the levels of tannins and dimeric chalcones [50]. However, there are few studies on the effects of this species on the central nervous system. Extracts of M. urundeuva were used in animal models of Parkinson’s disease and were found to reverse behavioral changes and increase the number of neurons and their viability. At the neurochemical level, these extracts prevented the reduction of dopamine level, because dopamine levels are low in Parkinson’s disease, and probably promote neuroprotection via their antioxidant and anti-inflammatory activities, and these results demonstrate that this plant is useful in the treatment of neurodegenerative diseases [51]. M. urundeuva were shown to have excellent acetylcholinesterase inhibitory activity, a high phenol content, and high antioxidant activity which shows that M. urundeuva also has potential as a source of therapeutic agents against AD.

P. guajava also exhibited high antioxidant activity and had a high content of phenolic compounds and flavonoids, in accordance with a previous study, and it was found to be useful in alleviating various oxidative stress-related diseases [52]. The antidiarrheal activity of the plant is probably due to the high phenolic content.

S. coriaceum exhibits acetylcholinesterase inhibitory activity, as well as antioxidant, anti-inflammatory, antimicrobial, healing, antiulcerogenic, and leishmanicidal activities [35, 36]. The S. coriaceum extract was shown to have excellent acetylcholinesterase inhibitory and antioxidant activities, which make it another potential source of therapeutic agents against AD.

4. Conclusions

The assessed natural products are promising sources of pharmacological agents for the treatment of AD, which affects 24 million people worldwide. The strategy chosen seems to be a good choice by selecting plants, which are inhibitors of acetylcholinesterase, and also possesses antioxidant activity. Phenols and flavonoids are important natural products that inhibit acetylcholinesterase and thus restore acetylcholine level essential for brain function; therefore the six medicinal species selected are promising sources of natural products that can be used in studies for discovering new therapeutic compounds against AD.

Competing Interests

All authors declare that there is no financial/commercial conflict of interests.

Acknowledgments

This work was supported in part by Universidade Federal do Maranhão and Universidade Estadual do Ceará-Renorbio. Alexandre Batista Penido is grateful to the Fundação de Amparo a Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) that provided a scholarship. CNPq also gave financial support.

References

  1. A. Singhal, O. Bangar, and V. Naithani, “Medicinal plants with a potential to treat Alzheimer and associated symptoms,” International journal of Nutrition, Pharmacology, Neurological Diseases, vol. 2, no. 2, pp. 84–91, 2012. View at Publisher · View at Google Scholar
  2. L. Huang, T. Su, and X. Li, “Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease,” Current Topics in Medicinal Chemistry, vol. 13, no. 15, pp. 1864–1878, 2013. View at Publisher · View at Google Scholar
  3. T. O. Elufioye, E. M. Obuotor, A. T. Sennuga, J. M. Agbedahunsi, and S. A. Adesanya, “Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants,” Brazilian Journal of Pharmacognosy, vol. 20, no. 4, pp. 472–477, 2010. View at Google Scholar · View at Scopus
  4. A. De Falco, D. S. Cukierman, R. A. Hauser-Davis, and N. A. Rey, “Alzheimer's disease: etiological hypotheses and treatment perspectives,” Quimica Nova, vol. 39, no. 1, pp. 63–80, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. G. G. Duthie, S. J. Duthie, and J. A. M. Kyle, “Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants,” Nutrition Research Reviews, vol. 13, no. 1, pp. 79–106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Tiwari, “Antioxidants: new-generation therapeutic base for treatment of polygenic disorders,” Current Science, vol. 86, no. 8, pp. 1092–1102, 2004. View at Google Scholar · View at Scopus
  7. Y. K. Park, E. Park, J.-S. Kim, and M.-H. Kang, “Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans,” Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, vol. 529, no. 1-2, pp. 77–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Morais, K. Lima, S. Siqueira et al., “Correlação entre as atividades antiradical, antiacetilcolinesterase e teor de fenóis totais de extratos de plantas medicinais de farmácias vivas,” Revista Brasileira de Plantas Medicinais, vol. 15, no. 4, pp. 575–582, 2013. View at Publisher · View at Google Scholar
  9. C. M. Feitosa, R. M. Freitas, N. N. N. Luz, M. Z. B. Bezerra, and M. T. S. Trevisan, “Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants,” Brazilian Journal of Biology, vol. 71, no. 3, pp. 783–789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M.-J. R. Howes and P. J. Houghton, “Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function,” Pharmacology Biochemistry and Behavior, vol. 75, no. 3, pp. 513–527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. B. Penido, S. M. De Morais, A. B. Ribeiro, and A. Z. Silva, “Ethnobotanical study of medicinal plants in imperatriz, state of Maranhão, Northeastern Brazil,” Acta Amazonica, vol. 46, no. 4, pp. 345–354, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Sousa, H. R. Silva, G. M. Jr. Vieira et al., “Fenóis totais e atividade antioxidante de cinco plantas medicinais,” Química Nova, vol. 30, no. 2, pp. 351–355, 2007. View at Publisher · View at Google Scholar
  13. C. S. Funari and V. O. Ferro, “Análise de própolis,” Ciência e Tecnologia de Alimentos, vol. 26, no. 1, pp. 171–178, 2006. View at Publisher · View at Google Scholar
  14. C. A. Carvalho, M. V. Lourenço, B. W. Bertoni et al., “Atividade antioxidante de Jacaranda decurrens Cham., Bignoniaceae,” Revista Brasileira de Farmacognosia, vol. 19, no. 2B, pp. 592–598, 2009. View at Publisher · View at Google Scholar
  15. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Haslam, “Natural polyphenols (vegetable tannins) as drugs: possible modes of action,” Journal of Natural Products, vol. 59, no. 2, pp. 205–215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Gonzalez-Mujica, N. Motta, and A. Becerra, “Inhibition of hepatic neoglucogenesis and glucose-6-phosphatase by aqueous extract of Bauhinia megalandra leaves,” Phytotherapy Research, vol. 12, no. 4, pp. 291–293, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. da Cunha, S. Menon, R. Menon, A. G. Couto, C. Bürger, and M. W. Biavatti, “Hypoglycemic activity of dried extracts of Bauhinia forficata Link,” Phytomedicine, vol. 17, no. 1, pp. 37–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. S. Marques, L. R. Rolim, L. D. S. Alves et al., “Estado da arte de Bauhinia forficataLink (Fabaceae) como alternativa terapêutica para o tratamento do diabetes melittus,” Revista de Ciências Farmacêuticas Básica e Aplicada, vol. 34, no. 3, pp. 313–320, 2013. View at Google Scholar
  20. L. A. F. Paiva, K. M. De Alencar Cunha, F. A. Santos, N. V. Gramosa, E. R. Silveira, and V. S. N. Rao, “Investigation on the wound healing activity of oleo-resin from Copaifera langsdorffi in rats,” Phytotherapy Research, vol. 16, no. 8, pp. 737–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. F. Paiva, L. A. Gurgel, E. T. De Sousa et al., “Protective effect of Copaifera langsdorffii oleo-resin against acetic acid-induced colitis in rats,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 51–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. P. F. Maciel, C. M. C. P. Gouvêa, M. Toyama, M. Smolka, S. Marangoni, and G. M. Pastore, “Extraction, purification and biochemical characterization of a peroxidase from Copaifera langsdorffii leaves,” Quimica Nova, vol. 30, no. 5, pp. 1067–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Sousa, D. Nanayakkara, A. Silva, and J. K. Bastos, “Leishmanicidal and antimalarial activities of crude extracts from aerial parts of Copaifera langsdorffii and isolation of secondary metabolites,” Journal of Pharmacy Research, vol. 5, no. 8, pp. 4103–4107, 2012. View at Google Scholar
  24. Y. Okada, T. Motoya, S. Tanimoto, and M. Nomura, “A study on fatty acids in seeds of Euterpe oleracea Mart seeds,” Journal of Oleo Science, vol. 60, no. 9, pp. 463–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. A. S. Favacho, B. R. Oliveira, K. C. Santos et al., “Anti-inflammatory and antinociceptive activities of Euterpe oleracea oil,” Brazilian Journal of Pharmacognosy, vol. 21, no. 1, pp. 105–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. De Moura and Â. C. Resende, “Cardiovascular and Metabolic Effects of Açaí, an Amazon Plant,” Journal of Cardiovascular Pharmacology, vol. 68, no. 1, pp. 19–26, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. H. C. Ferreira, C. P. Serra, D. C. Endringer, V. S. Lemos, F. C. Braga, and S. F. Cortes, “Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery,” Phytomedicine, vol. 14, no. 7-8, pp. 473–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. C. Silva, F. C. Braga, M. P. Lima, J. L. Pesquero, V. S. Lemos, and S. F. Cortes, “Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 709–713, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. L. Da Rosa, G. M. Nardi, A. G. De Farias Januário et al., “Anti-inflammatory, analgesic, and immunostimulatory effects of luehea divaricata mart. & zucc. (Malvaceae) bark,” Brazilian Journal of Pharmaceutical Sciences, vol. 50, no. 3, pp. 600–610, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Shah, M. Patel, R. Patel, and P. Parmar, “Mangifera Indica (Mango),” Pharmacognosy Reviews, vol. 4, no. 7, pp. 42–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Guedes, E. U. Alves, M. S. de Medeiros, R. Bruno, E. Gonçalves, and E. Costa, “Armazenamento de sementes de Myracrodruon urundeuva Fr. All. em diferentes embalagens e ambientes,” Revista Brasileira de Plantas Medicinais, vol. 14, no. 1, pp. 68–75, 2012. View at Publisher · View at Google Scholar
  32. V. M. De Moura, L. A. Freitas De Sousa, M. Cristina Dos-Santos et al., “Plants used to treat snakebites in Santarém, western Pará, Brazil: an assessment of their effectiveness in inhibiting hemorrhagic activity induced by Bothrops jararaca venom,” Journal of Ethnopharmacology, vol. 161, pp. 224–232, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Lozoya, H. Reyes-Morales, M. A. Chávez-Soto, M. D. C. Martínez-García, Y. Soto-González, and S. V. Doubova, “Intestinal anti-spasmodic effect of a phytodrug of Psidium guajava folia in the treatment of acute diarrheic disease,” Journal of Ethnopharmacology, vol. 83, no. 1-2, pp. 19–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. K. H. Musa, A. Abdullah, and V. Subramaniam, “Flavonoid profile and antioxidant activity of pink guava,” ScienceAsia, vol. 41, no. 3, pp. 149–154, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. A. F. R. M. Michel, M. M. Melo, P. P. Campos et al., “Evaluation of anti-inflammatory, antiangiogenic and antiproliferative activities of Arrabidaea chica crude extracts,” Journal of Ethnopharmacology, vol. 165, pp. 29–38, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. D. Zocoler, A. C. C. Sanches, I. Albrecht, and J. C. P. De Mello, “Antioxidant capacity of extracts and isolated compounds from Stryphnodendron obovatum Benth,” Brazilian Journal of Pharmaceutical Sciences, vol. 45, no. 3, pp. 443–452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Aazza, B. Lyoussi, and M. G. Miguel, “Antioxidant activity of some Morrocan hydrosols,” Journal of Medicinal Plants Research, vol. 5, no. 30, pp. 6688–6696, 2011. View at Google Scholar
  38. A. Khathi, M. R. Serumula, R. B. Myburg, F. R. Van Heerden, and C. T. Musabayane, “Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge,” PLoS ONE, vol. 8, no. 11, Article ID e81632, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Wettasinghe and F. Shahidi, “Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds,” Food Chemistry, vol. 67, no. 4, pp. 399–414, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Publisher · View at Google Scholar · View at Scopus
  41. I. K. Rhee, M. van de Meent, K. Ingkaninan, and R. Verpoorte, “Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining,” Journal of Chromatography A, vol. 915, no. 1-2, pp. 217–223, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. M. T. Trevisan, F. V. Macedo, M. Van De Meent, I. K. Rhee, and R. Verpoorte, “Seleção de plantas com atividade anticolinasterase para tratamento da doença de Alzheimer,” Química Nova, vol. 26, no. 3, pp. 301–304, 2003. View at Publisher · View at Google Scholar
  43. J. P. Dzoyem and J. N. Eloff, “Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa,” Journal of Ethnopharmacology, vol. 160, pp. 194–201, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. C. F. Assumpção, P. Bachiega, M. C. Morzelle et al., “Characterization, antioxidant potential and cytotoxic study of mangaba fruits,” Ciência Rural, vol. 44, no. 7, pp. 1297–1303, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Chen, J. Zhang, B. Zhang, and C.-X. Gong, “Targeting insulin signaling for the treatment of Alzheimer's disease,” Current Topics in Medicinal Chemistry, vol. 16, no. 5, pp. 485–492, 2016. View at Google Scholar
  46. I. Uriarte-Pueyo and M. I. Calvo, “Flavonoids as acetylcholinesterase inhibitors,” Current Medicinal Chemistry, vol. 18, no. 34, pp. 5289–5302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Lemos, J. R. Santin, C. S. Mizuno et al., “Copaifera langsdorffii: evaluation of potential gastroprotective of extract and isolated compounds obtained from leaves,” Brazilian Journal of Pharmacognosy, vol. 25, no. 3, pp. 238–245, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Feitosa, A. N. Cavalcante, S. K. M. Chaves, and L. Da Silva Araujo, “Medicinal plants of Brazil and Alzheimer's disease: Evolution in traditional use and pre-clinical studies,” Asian Journal of Biomedical and Pharmaceutical Sciences, vol. 6, no. 58, pp. 1–13, 2016. View at Google Scholar
  49. J. Wattanathorn, S. Muchimapura, W. Thukham-Mee, K. Ingkaninan, and S. Wittaya-Areekul, “Mangifera indica fruit extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 132097, 7 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. G. S. B. Viana, M. A. M. Bandeira, and F. J. A. Matos, “Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão,” Phytomedicine, vol. 10, no. 2-3, pp. 189–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Calou, M. A. Bandeira, W. Aguiar-Galvão et al., “Neuroprotective properties of a standardized extract from Myracrodruon urundeuva Fr. All. (Aroeira-Do-Sertão), as evaluated by a Parkinson's disease model in rats,” Parkinson's Disease, vol. 2014, Article ID 519615, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Iha, K. F. Migliato, J. C. Vellosa et al., “Estudo fitoquímico de goiaba (Psidium guajava L.) com potencial antioxidante para o desenvolvimento de formulação fitocosmética,” Revista Brasileira de Farmacognosia, vol. 18, no. 3, pp. 387–393, 2008. View at Publisher · View at Google Scholar