Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017, Article ID 5173168, 8 pages
https://doi.org/10.1155/2017/5173168
Research Article

Electroacupuncture Improves Cognitive Deficits through Increasing Regional Cerebral Blood Flow and Alleviating Inflammation in CCI Rats

1The 3rd Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
2Zhejiang Chinese Medical University, Hangzhou 310053, China

Correspondence should be addressed to Zhe Liu; moc.361@uilsrss

Received 28 October 2016; Revised 1 January 2017; Accepted 15 March 2017; Published 10 April 2017

Academic Editor: Cheorl-Ho Kim

Copyright © 2017 Dexiong Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M.-F. Dubois and R. Hébert, “The incidence of vascular dementia in Canada: a comparison with Europe and East Asia,” Neuroepidemiology, vol. 20, no. 3, pp. 179–187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Iadecola, “The pathobiology of vascular dementia,” Neuron, vol. 80, no. 4, pp. 844–866, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Zhao, J.-H. Gu, C.-L. Dai et al., “Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice,” Frontiers in Aging Neuroscience, vol. 6, article 10, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Bang, W. K. Jeon, I. S. Lee, J.-S. Han, and B.-Y. Kim, “Biphasic functional regulation in hippocampus of rat with chronic cerebral hypoperfusion induced by permanent occlusion of bilateral common carotid artery,” PLoS ONE, vol. 8, no. 7, Article ID e70093, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. Z.-Y. Cai, Y. Yan, and R. Chen, “Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model,” Neuroscience Bulletin, vol. 26, no. 1, pp. 28–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Neumann, C. H. Cohan, K. R. Dave, C. B. Wright, and M. A. Perez-Pinzon, “Global cerebral ischemia: synaptic and cognitive dysfunction,” Current Drug Targets, vol. 14, no. 1, pp. 20–35, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Farkas, P. G. M. Luiten, and F. Bari, “Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases,” Brain Research Reviews, vol. 54, no. 1, pp. 162–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S.-Q. Du, X.-R. Wang, L.-Y. Xiao et al., “Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion?” Molecular Neurobiology, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. S.-K. Kim, K.-O. Cho, and S. Y. Kim, “White matter damage and hippocampal neurodegeneration induced by permanent bilateral occlusion of common carotid artery in the rat: comparison between Wistar and Sprague-Dawley strain,” The Korean Journal of Physiology and Pharmacology, vol. 12, no. 3, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. S. Nicolas, M. Amici, Z. A. Bortolotto et al., “The role of JAK-STAT signaling within the CNS,” JAKSTAT, vol. 2, no. 1, Article ID e22925, 2013. View at Publisher · View at Google Scholar
  11. K. M. Lee, J. H. Bang, J.-S. Han et al., “Cardiotonic pill attenuates white matter and hippocampal damage via inhibiting microglial activation and downregulating ERK and p38 MAPK signaling in chronic cerebral hypoperfused rat,” BMC Complementary and Alternative Medicine, vol. 13, article 334, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Urabe, “Molecular mechanism and new protective strategy for ischemic white matter damages,” Clinical Neurology, vol. 52, no. 11, pp. 908–910, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. H. S. Han and M. A. Yenari, “Cellular targets of brain inflammation in stroke,” Current Opinion in Investigational Drugs, vol. 4, no. 5, pp. 522–529, 2003. View at Google Scholar · View at Scopus
  14. C. X. Wang and Y. Z. Sun, “Effects of scalp point therapy on expression of endothelial growth factors in hippocampus of rats with chronic cerebral ischemia,” Acupuncture Research, vol. 37, no. 5, pp. 375–379, 2012. View at Publisher · View at Google Scholar
  15. H. Y. Cheng, J. C. Yu, Z. G. Jiang et al., “Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice,” Neuroscience Letters, vol. 432, no. 2, pp. 111–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-W. Ni, H. Ohta, K. Matsumoto, and H. Watanabe, “Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats,” Brain Research, vol. 653, no. 1-2, pp. 231–236, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Cankurtaran, B. B. Yavuz, E. S. Cankurtaran, M. Halil, Z. Ulger, and S. Ariogul, “Risk factors and type of dementia: vascular or Alzheimer?” Archives of Gerontology and Geriatrics, vol. 47, no. 1, pp. 25–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. B. Gorelick, “Risk factors for vascular dementia and Alzheimer disease,” Stroke, vol. 35, no. 11, supplement 1, pp. 2620–2622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. Meyer, R. L. Rogers, B. W. Judd, K. F. Mortel, and P. Sims, “Cognition and cerebral blood flow fluctuate together in multi-infarct dementia,” Stroke, vol. 19, no. 2, pp. 163–169, 1988. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Rosi, M. Andres-Mach, K. M. Fishman, W. Levy, R. A. Ferguson, and J. R. Fike, “Cranial irradiation alters the behaviorally induced immediate-early gene Arc (activity-regulated cytoskeleton-associated protein),” Cancer Research, vol. 68, no. 23, pp. 9763–9770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. L. Rogers, J. S. Meyer, K. F. Mortel, R. K. Mahurin, and B. W. Judd, “Decreased cerebral blood flow precedes multi-infarct dementia, but follows senile dementia of Alzheimer type,” Neurology, vol. 36, no. 1, pp. 1–6, 1986. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Shu, H. Zhang, and J. J. Zhang, “Advances in experimental research of chronic cerebral hypoperfusion,” Chinese Journal of Cerebrovascular Diseases, vol. 4, no. 3, pp. 199–205, 2010. View at Google Scholar
  23. L. Sun, J. Wu, S. C. Wang, and Y. Zhang, “Cerebral blood flow and apoptosis in rats with vascular dementia,” Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases, vol. 3, no. 6, pp. 409–411, 2001. View at Google Scholar
  24. X. Zhang, B. Wu, K. Nie, Y. Jia, and J. Yu, “Effects of acupuncture on declined cerebral blood flow, impaired mitochondrial respiratory function and oxidative stress in multi-infarct dementia rats,” Neurochemistry International, vol. 65, no. 1, pp. 23–29, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. N. G. Frangogiannis, “Chemokines in ischemia and reperfusion,” Thrombosis and Haemostasis, vol. 97, no. 5, pp. 738–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Duan, L. Gui, Z. Zhou et al., “Adenosine A2A receptor deficiency exacerbates white matter lesions and cognitive deficits induced by chronic cerebral hypoperfusion in mice,” Journal of the Neurological Sciences, vol. 285, no. 1-2, pp. 39–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Boutin, R. A. LeFeuvre, R. Horai, M. Asano, Y. Iwakura, and N. J. Rothwell, “Role of IL-1α and IL-1β in ischemic brain damage,” Journal of Neuroscience, vol. 21, no. 15, pp. 5528–5534, 2001. View at Google Scholar · View at Scopus
  28. P. D. Hurn, S. Subramanian, S. M. Parker et al., “T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 11, pp. 1798–1805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Pan and A. J. Kastin, “Tumor necrosis factor and stroke: role of the blood-brain barrier,” Progress in Neurobiology, vol. 83, no. 6, pp. 363–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Pinteaux, N. J. Rothwell, and H. Boutin, “Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia,” GLIA, vol. 53, no. 5, pp. 551–556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Herrmann, V. Tarabin, S. Suzuki et al., “Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 4, pp. 406–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. J. Smith, H. C. Emsley, C. M. Gavin et al., “Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and longterm outcome,” BMC Neurology, vol. 4, article 2, 2004. View at Publisher · View at Google Scholar
  33. S. M. Allan and N. J. Rothwell, “Cytokines and acute neurodegeneration,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 734–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. O'Shea, M. Gadina, and R. D. Schreiber, “Cytokine signaling in 2002: new surprises in the Jak/Stat pathway,” Cell, vol. 109, no. 2, supplement 1, pp. S121–S131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. O. S. Kim, E. J. Park, E.-H. Joe, and I. Jou, “JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells,” The Journal of Biological Chemistry, vol. 277, no. 43, pp. 40594–40601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Satriotomo, K. K. Bowen, and R. Vemuganti, “JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia,” Journal of Neurochemistry, vol. 98, no. 5, pp. 1353–1368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Dong, W. Guo, X. Zheng et al., “Electroacupuncture improves cognitive deficits associated with AMPK activation in SAMP8 mice,” Metabolic Brain Disease, vol. 30, no. 3, pp. 777–784, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Han, Y. Lu, H. Zhao, Y. Wang, L. Li, and T. Wang, “Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/NF-κB signaling pathway in microglia,” International Journal of Clinical and Experimental Pathology, vol. 8, no. 9, pp. 11199–11205, 2015. View at Google Scholar
  39. H.-Y. Lin, C.-H. Tang, J.-H. Chen et al., “Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia,” Journal of Cellular Physiology, vol. 226, no. 6, pp. 1573–1582, 2011. View at Publisher · View at Google Scholar · View at Scopus