Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2018, Article ID 9536924, 10 pages
https://doi.org/10.1155/2018/9536924
Research Article

Association of Tongue Bacterial Flora and Subtypes of Liver-Fire Hyperactivity Syndrome in Hypertensive Patients

1Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
2Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
3Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
4Teaching and Research Office of Medical Cosmetology, Department of Management, Fujian Health College, Fuzhou 350101, China

Correspondence should be addressed to Jie-wei Luo; moc.nuyila@1240oulcod

Received 10 July 2017; Accepted 4 December 2017; Published 10 January 2018

Academic Editor: Salvatore Chirumbolo

Copyright © 2018 Jie-wei Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Lederberg and A. T. McCray, “Ome sweet' omics - a genealogical treasury of words,” The Scientist, vol. 15, no. 7, p. 8, 2001. View at Google Scholar
  2. NIH HMP Working Group, J. Peterson, S. Garges et al., “The NIH human microbiome project,” Genome Research, vol. 19, no. 12, pp. 2317–2323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. NIH/National Institute of Dental and Craniofacial Research, “First comprehensive database of human oral microbiome launched,” ScienceDaily, 2008, https://www.sciencedaily.com/releases/2008/03/080326121227.htm. View at Google Scholar
  4. T. F. Wang, Diagnostics of Traditional Chinese Medicine, pp. 25-33, People’s Medical Publishing House, Beijing, China, 2nd edition, 2013 (Chinese). View at Publisher · View at Google Scholar · View at MathSciNet
  5. C. Moon, M. T. Baldridge, M. A. Wallace, C.-A. D. Burnham, H. W. Virgin, and T. S. Stappenbeck, “Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation,” Nature, vol. 521, no. 7550, pp. 90–93, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Luo, X. Chen, L. Ren, and X. M. Zhang, “A study on syndrome differentiation of hypertension complicated with oral symptoms,” Fujian Journal of TCM, vol. 30, no. 9, pp. 12-13, 1999 (Chinese). View at Google Scholar
  7. X. Y. Zheng, The Principle of Clinical Research on New Drugs of Chinese Medicine (Trial), pp. 240-245, China Medical Science Press, Beijing, China, 2002.
  8. Y. Wang and P.-Y. Qian, “Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies,” PLoS ONE, vol. 4, no. 10, Article ID e7401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Zakrzewski, A. Goesmann, S. Jaenicke et al., “Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing,” Journal of Biotechnology, vol. 158, no. 4, pp. 248–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. The Revising Committee of Chinese Guidelines for Hypertension Prevention and Treatment, “2010 Chinese guidelines for the management of hypertension,” Chinese Journal of Cardiology, vol. 39, no. 7, pp. 579–616, 2011 (Chinese). View at Google Scholar
  11. A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld, “PANDAseq: paired-end assembler for illumina sequences,” BMC Bioinformatics, vol. 13, p. 31, 2012. View at Google Scholar · View at Scopus
  12. R. C. Edgar, “UPARSE: highly accurate OTU sequences from microbial amplicon reads,” Nature Methods, vol. 10, no. 10, pp. 996–998, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. D. McDonald, M. N. Price, J. Goodrich et al., “An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea,” The ISME Journal, vol. 6, no. 3, pp. 610–618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. P. F. Kemp and J. Y. Aller, “Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us,” FEMS Microbiology Ecology, vol. 47, no. 2, pp. 161–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Segata, J. Izard, L. Waldron et al., “Metagenomic biomarker discovery and explanation,” Genome Biology, vol. 12, no. 6, article R60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Malinen, T. Rinttilä, K. Kajander et al., “Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR,” American Journal of Gastroenterology, vol. 100, no. 2, pp. 373–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Seksik, L. Rigottier-Gois, G. Gramet et al., “Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon,” Gut, vol. 52, no. 2, pp. 237–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. R. B. Ness, S. Hillier, H. E. Richter et al., “Can known risk factors explain racial differences in the occurrence of bacterial vaginosis?” Journal of the National Medical Association, vol. 95, no. 3, pp. 201–212, 2003. View at Google Scholar
  19. L. Dethlefsen and D. A. Relman, “Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 108, supplement 1, pp. 4554–4561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Signoretto, F. Bianchi, G. Burlacchini, F. Sivieri, D. Spratt, and P. Canepari, “Drinking habits are associated with changes in the dental plaque microbial community,” Journal of Clinical Microbiology, vol. 48, no. 2, pp. 347–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Tremaroli and F. Bäckhed, “Functional interactions between the gut microbiota and host metabolism,” Nature, vol. 489, no. 7415, pp. 242–249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. Mayer, K. Tillisch, and A. Gupta, “Gut/brain axis and the microbiota,” The Journal of Clinical Investigation, vol. 125, no. 3, pp. 926–938, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Cerf-Bensussan and V. Gaboriau-Routhiau, “The immune system and the gut microbiota: friends or foes?” Nature Reviews Immunology, vol. 10, no. 10, pp. 735–744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. T. Bailey, S. E. Dowd, J. D. Galley, A. R. Hufnagle, R. G. Allen, and M. Lyte, “Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation,” Brain, Behavior, and Immunity, vol. 25, no. 3, pp. 397–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Wang, A. B. Roberts, J. A. Buffa et al., “Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis,” Cell, vol. 163, no. 7, pp. 1585–1595, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. Griffin, X. Wang, and E. Stanley, “Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics,” Circulation: Cardiovascular Genetics, vol. 8, no. 1, pp. 187–191, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Wang, E. Klipfell, B. J. Bennett et al., “Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease,” Nature, vol. 472, no. 7341, pp. 57–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Hartiala, B. J. Bennett, W. H. W. Tang et al., “Comparative genome-wide association studies in mice and humans for trimethylamine N-Oxide, a proatherogenic metabolite of choline and L-carnitine,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 6, pp. 1307–1313, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. T. Katz and R. P. Shannon, “Bacteria and coronary atheroma: More fingerprints but no smoking gun,” Circulation, vol. 113, no. 7, pp. 920–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. H. Meurman, M. Sanz, and S.-J. Janket, “Oral health, atherosclerosis, and cardiovascular disease,” Critical Reviews in Oral Biology and Medicine, vol. 15, no. 6, pp. 403–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Miyakawa, K. Honma, M. Qi, and H. K. Kuramitsu, “Interaction of porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis,” Journal of Periodontal Research, vol. 39, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Li, E. Messas, E. L. Batista Jr., R. A. Levine, and S. Amar, “Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model,” Circulation, vol. 105, no. 7, pp. 861–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Nakano, H. Inaba, R. Nomura et al., “Distribution of Porphyromonas gingivalis fimA genotypes in cardiovascular specimens from Japanese patients,” Oral microbiology and immunology, vol. 23, no. 2, pp. 170–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Nakano, H. Nemoto, R. Nomura et al., “Detection of oral bacteria in cardiovascular specimens,” Oral microbiology and immunology, vol. 24, no. 1, pp. 64–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Kurihara, Y. Inoue, T. Iwai, M. Umeda, Y. Huang, and I. Ishikawa, “Detection and localization of periodontopathic bacteria in abdominal aortic aneurysms,” European Journal of Vascular and Endovascular Surgery, vol. 28, no. 5, pp. 553–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Koren, A. Spor, J. Felin et al., “Human oral, gut, and plaque microbiota in patients with atherosclerosis,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 108, Supplement 1, pp. 4592–4598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Jin, Z. Jin, and L. L. Zhang, “Gut microbiota might be an environmental factor in the development of essential hypertension,” Chinese Journal of Microecology, vol. 27, no. 1, pp. 121–125, 2015. View at Google Scholar
  38. C. P. Bondonno, A. H. Liu, K. D. Croft et al., “Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women,” American Journal of Hypertension, vol. 28, no. 5, pp. 572–575, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Shakoor, N. Fasih, K. Jabeen, and B. Jamil, “Rothia dentocariosa endocarditis with mitral valve prolapse: Case report and brief review,” Infection, vol. 39, no. 2, pp. 177–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. E. Carter, K. N. Mizell, and T. N. Evans, “Neisseria sicca meningitis following intracranial hemorrhage and ventriculostomy tube placement,” Clinical Neurology and Neurosurgery, vol. 109, no. 10, pp. 918–921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Wang, M. R. Wang, and Z. L. Wang, “Diversity of bacterial population on the tongue dorsa of halitosis patients,” Beijing Journal of Stomatology, vol. 18, no. 1, pp. 25–41, 2010. View at Google Scholar
  42. T. Takeshita, N. Suzuki, Y. Nakano et al., “Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production,” Scientific Reports, vol. 2, p. 215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Takeshita, N. Suzuki, Y. Nakano et al., “Relationship between oral malodor and the global composition of indigenous bacterial populations in saliva,” Applied and Environmental Microbiology, vol. 76, no. 9, pp. 2806–2814, 2010. View at Publisher · View at Google Scholar · View at Scopus