Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 134893, 10 pages
http://dx.doi.org/10.4061/2011/134893
Research Article

Expression, Purification, and Characterisation of Dehydroquinate Synthase from Pyrococcus furiosus

1Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
2Institute of Molecular Biosciences, Massey University, Palmerston North 4442, New Zealand
3Department of Chemistry, Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

Received 6 October 2010; Revised 28 January 2011; Accepted 8 February 2011

Academic Editor: Vasu D. Appanna

Copyright © 2011 Leonardo Negron et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ganem, “From glucose to aromatics: recent developments in natural products of the shikimic acid pathway,” Tetrahedron, vol. 34, no. 22, pp. 3353–3383, 1978. View at Google Scholar
  2. S. M. Kapnick and Y. Zhang, “New tuberculosis drug development: targeting the shikimate pathway,” Expert Opinion on Drug Discovery, vol. 3, no. 5, pp. 565–577, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Coggins, C. Abell, L. B. Evans et al., “Experiences with the shikimate-pathway enzymes as targets for rational drug design,” Biochemical Society Transactions, vol. 31, no. 3, pp. 548–552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Bentley, “The shikimate pathway—a metabolic tree with many branches,” Critical Reviews in Biochemistry and Molecular Biology, vol. 25, no. 5, pp. 307–384, 1990. View at Google Scholar · View at Scopus
  5. A. R. Hawkins, J. D. Moore, and A. M. Adeokun, “Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans, and the overproduction of the type II 3-dehydroquinase from Neurospora crassa,” Biochemical Journal, vol. 296, no. 2, pp. 451–457, 1993. View at Google Scholar · View at Scopus
  6. J. D. Moore, J. R. Coggins, R. Virden, and A. R. Hawkins, “Efficient independent activity of a monomeric, monofunctional dehydroquinate synthase derived from the N-terminus of the pentafunctional AROM protein of Aspergillus nidulans,” Biochemical Journal, vol. 301, no. 1, pp. 297–304, 1994. View at Google Scholar · View at Scopus
  7. N. Hasan and E. W. Nester, “Dehydroquinate synthase in Bacillus subtilis. An enzyme associated with chorismate synthase and flavin reductase,” Journal of Biological Chemistry, vol. 253, no. 14, pp. 4999–5004, 1978. View at Google Scholar · View at Scopus
  8. J. W. Frost, J. L. Bender, J. T. Kadonaga, and J. R. Knowles, “Dehydroquinate synthase from Escherichia coli: purification, cloning, and construction of overproducers of the enzyme,” Biochemistry, vol. 23, no. 19, pp. 4470–4475, 1984. View at Google Scholar · View at Scopus
  9. P. R. Srinivasan, J. Rothschild, and D. B. Sprinson, “The enzymic conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate to 5-dehydroquinate,” The Journal of Biological Chemistry, vol. 238, pp. 3176–3182, 1963. View at Google Scholar
  10. E. P. Carpenter, A. R. Hawkins, J. W. Frost, and K. A. Brown, “Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis,” Nature, vol. 394, no. 6690, pp. 299–302, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. Günel-Özcan, K. A. Brown, A. G. Allen, and D. J. Maskell, “Salmonella typhimurium aroB mutants are attentuated in BALB/c mice,” Microbial Pathogenesis, vol. 23, no. 5, pp. 311–316, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Sugahara, Y. Nodake, M. Sugahara, and N. Kunishima, “Crystal structure of dehydroquinate synthase from Thermus thermophilus HB8 showing functional importance of the dimeric state,” Proteins, vol. 58, no. 1, pp. 249–252, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. S. Liu, W. C. Cheng, H. J. Wang, Y. C. Chen, and W. C. Wang, “Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase,” Biochemical and Biophysical Research Communications, vol. 373, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. M. Lambert, M. R. Boocock, and J. R. Coggins, “The 3-dehydroquinate synthase activity of the pentafunctional arom enzyme complex of Neurospora crassa is Zn2+ dependent,” Biochemical Journal, vol. 226, no. 3, pp. 817–829, 1985. View at Google Scholar · View at Scopus
  15. E. Yamamoto, “Purification and metal requirements of 3-dehydroquinate synthase from Phaseolus mungo seedlings,” Phytochemistry, vol. 19, no. 5, pp. 779–781, 1980. View at Google Scholar · View at Scopus
  16. R. Saijo and T. Kosuge, “The conversion of 3-deoxy-arabino-heptulosonate 7-phosphate to 3-dehydroquinate by sorghum seedling preparations,” Phytochemistry, vol. 17, no. 2, pp. 223–225, 1978. View at Google Scholar · View at Scopus
  17. C. E. Nichols, J. Ren, K. Leslie et al., “Comparison of ligand-induced conformational changes and domain closure mechanisms, between prokaryotic and eukaryotic dehydroquinate synthases,” Journal of Molecular Biology, vol. 343, no. 3, pp. 533–546, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. T. H. Ngo, S. Natarajan, H. Kim et al., “Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of 3-dehydroquinate synthase, Xoo1243, from Xanthomonas oryzae pv. oryzae,” Acta Crystallographica Section F, vol. 64, no. 12, pp. 1128–1131, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. L. Bender, S. Mehdi, and J. R. Knowles, “Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis,” Biochemistry, vol. 28, no. 19, pp. 7555–7560, 1989. View at Google Scholar · View at Scopus
  20. S. L. Rotenberg and D. B. Sprinson, “Mechanism and stereochemistry of 5-dehydroquinate synthetase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 67, no. 4, pp. 1669–1672, 1970. View at Google Scholar · View at Scopus
  21. S. L. Rotenberg and D. B. Sprinson, “Isotope effects in 3-dehydroquinate synthase and dehydratase. Mechanistic implications,” Journal of Biological Chemistry, vol. 253, no. 7, pp. 2210–2215, 1978. View at Google Scholar · View at Scopus
  22. M. J. Turner, B. W. Smith, and E. Haslam, “The shikimate pathway. Part IV. The stereochemistry of the 3-dehydroquinate dehydratase reaction and observations on 3-dehydroquinate synthetase,” Journal of the Chemical Society, Perkin Transactions 1, no. 1, pp. 52–55, 1975. View at Google Scholar · View at Scopus
  23. B. N. Ames, “Assay of inorganic phosphate, total phosphate and phosphatases,” in Methods Enzymol, E. Neufeld and V. Ginsburg, Eds., pp. 115–118, Academic Press, New York, NY, USA, 1966. View at Google Scholar
  24. U. S. Maitra and D. B. Sprinson, “5-Dehydro-3-deoxy-D-arabino-heptulosonic acid 7-phosphate. An intermediate in the 3-dehydroquinate synthase reaction,” Journal of Biological Chemistry, vol. 253, no. 15, pp. 5426–5430, 1978. View at Google Scholar · View at Scopus
  25. S. Myrvold, L. M. Reimer, D. L. Pompliano, and J. W. Frost, “Chemical inhibition of dehydroquinate synthase,” Journal of the American Chemical Society, vol. 111, no. 5, pp. 1861–1866, 1989. View at Google Scholar · View at Scopus
  26. N. Nikolaides and B. Ganem, “Design and synthesis of substrate analogs for the inhibition of dehydroquinate synthase,” Tetrahedron Letters, vol. 30, no. 12, pp. 1461–1464, 1989. View at Google Scholar · View at Scopus
  27. G. Fiala and K. O. Stetter, “Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100C,” Archives of Microbiology, vol. 145, no. 1, pp. 56–61, 1986. View at Google Scholar · View at Scopus
  28. S. Tabor and C. C. Richardson, “A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 4, pp. 1074–1078, 1985. View at Google Scholar · View at Scopus
  29. L. R. Schofield, B. F. Anderson, M. L. Patchett, G. E. Norris, G. B. Jameson, and E. J. Parker, “Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase: an ancestral 3-deoxyald-2-ulosonate-phosphate synthase?” Biochemistry, vol. 44, no. 36, pp. 11950–11962, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. A. Lanzetta, L. J. Alvarez, P. S. Reinach, and O. A. Candia, “An improved assay for nanomole amounts of inorganic phosphate,” Analytical Biochemistry, vol. 100, no. 1, pp. 95–97, 1979. View at Google Scholar · View at Scopus
  31. H. H. Hess and J. E. Derr, “Assay of inorganic and organic phosphorus in the 0.1-5 nanomole range,” Analytical Biochemistry, vol. 63, no. 2, pp. 607–613, 1975. View at Google Scholar · View at Scopus
  32. F. H. Niesen, H. Berglund, and M. Vedadi, “The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability,” Nature Protocols, vol. 2, no. 9, pp. 2212–2221, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  34. S. E. Bondos and A. Bicknell, “Detection and prevention of protein aggregation before, during, and after purification,” Analytical Biochemistry, vol. 316, no. 2, pp. 223–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Knowles, “Mechanistic ingenuity in enzyme catalysis: dehydroquinate synthase,” Aldrichimica Acta, vol. 22, pp. 59–66, 1989. View at Google Scholar
  36. D. L. Pompliano, L. M. Reimer, S. Myrvold, and J. W. Frost, “Probing lethal metabolic perturbations in plants with chemical inhibition of dehydroquinate synthase,” Journal of the American Chemical Society, vol. 111, no. 5, pp. 1866–1871, 1989. View at Google Scholar · View at Scopus
  37. W. R. Simpson, “A critical review of cadmium in the marine environment,” Progress in Oceanography, vol. 10, no. 1, pp. 1–70, 1981. View at Google Scholar · View at Scopus
  38. J. Llanos, C. Capasso, E. Parisi, D. Prieur, and C. Jeanthon, “Susceptibility to heavy metals and cadmium accumulation in aerobic and anaerobic thermophilic microorganisms isolated from deep-sea hydrothermal vents,” Current Microbiology, vol. 41, no. 3, pp. 201–205, 2000. View at Google Scholar · View at Scopus