Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 179819, 8 pages
http://dx.doi.org/10.4061/2011/179819
Research Article

Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

1The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
2College of Life Science and Technology, Inner Mongolia Normal University, Huhhot 010022, China

Received 9 May 2011; Revised 29 July 2011; Accepted 2 August 2011

Academic Editor: Vasu D. Appanna

Copyright © 2011 Min Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. R. Melissa, O. S. Cathryn, R. Beth, J. H. Peter, T. Rowan, and P. C. William, “The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging materials,” Bioresource Technology, vol. 100, no. 5, pp. 1705–1710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Lešinský, J. Fritz, and R. Braun, “Biological degradation of PVA/CH blends in terrestrial and aquatic conditions,” Bioresource Technology, vol. 96, no. 2, pp. 197–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Finch, Polyvinyl Alcohol-Development, John Wiley & Sons, Chichester, UK, 1992.
  4. E. Ogur, “Polyvinyl alcohol: materials, processing and applications,” Rapra Review Reports, vol. 16, no. 12, pp. 1–130, 2005. View at Google Scholar
  5. J. Chen, Y. Zhang, G. C. Du, Z. Z. Hua, and Y. Zhu, “Biodegradation of polyvinyl alcohol by a mixed microbial culture,” Enzyme and Microbial Technology, vol. 40, no. 7, pp. 1686–1691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. C. Kim, C. K. Sohn, S. K. Lim, J. W. Lee, and W. Park, “Degradation of polyvinyl alcohol by Sphingomonas sp. SA3 and its symbiote,” Journal of Industrial Microbiology and Biotechnology, vol. 30, no. 1, pp. 70–74, 2003. View at Google Scholar · View at Scopus
  7. Y. Watanabe, N. Hamada, M. Morita, and Y. Tsujisaka, “Purification and properties of a polyvinyl alcohol-degrading enzyme produced by a strain of Pseudomonas,” Archives of Biochemistry and Biophysics, vol. 174, no. 2, pp. 575–581, 1976. View at Google Scholar · View at Scopus
  8. E. Chiellini, A. Corti, S. D'Antone, and R. Solaro, “Biodegradation of poly (vinyl alcohol) based materials,” Progress in Polymer Science, vol. 28, no. 6, pp. 963–1014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, Y. Li, W. Shen, D. Liu, and J. Chen, “A new strain, Streptomyces venezuelae GY1, producing a poly (vinyl alcohol)-degrading enzyme,” World Journal of Microbiology and Biotechnology, vol. 22, no. 6, pp. 625–628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Lee and M. N. Kim, “Isolation of new and potent poly (vinyl alcohol)-degrading strains and their degradation activity,” Polymer Degradation and Stability, vol. 81, no. 2, pp. 303–308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Matsumura, N. Tomizawa, A. Toki, K. Nishikawa, and K. Toshima, “Novel poly (vinyl alcohol)-degrading enzyme and the degradation mechanism,” Macromolecules, vol. 32, no. 23, pp. 7753–7761, 1999. View at Google Scholar · View at Scopus
  12. Y. Kawagoshi and M. Fujita, “Purification and properties of the polyvinyl alcohol-degrading enzyme 2,4-pentanedione hydrolase obtained from Pseudomonas vesicularis var. povalolyticus PH,” World Journal of Microbiology and Biotechnology, vol. 14, no. 1, pp. 95–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Kawai and X. P. Hu, “Biochemistry of microbial polyvinyl alcohol degradation,” Applied Microbiology and Biotechnology, vol. 84, no. 2, pp. 227–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Tokiwa, G. Kawabata, and A. Jarerat, “A modified method for isolating poly (vinyl alcohol)-degrading bacteria and study of their degradation patterns,” Biotechnology Letters, vol. 23, no. 23, pp. 1937–1941, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sakai, N. Hamada, and Y. Watanabe, “Degradation mechanism of poly (vinyl alcohol) by successive reactions of secondary alcohol oxidase and β-diketone hydrolase from Pseudomonas sp.,” Agricultural and Biological Chemistry, vol. 50, no. 4, pp. 989–996, 1986. View at Google Scholar
  16. M. Shimao, T. Tamogami, S. Kishida, and S. Harayama, “The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA,” Microbiology, vol. 146, no. 3, pp. 649–657, 2000. View at Google Scholar · View at Scopus
  17. Z. Y. Hu, G. C. Du, Z. Z. Hua, and J. Chen, “Effect of different carbon and nitrogen sources on PVA degradation in a mixed culture and PVA degradation mechanism,” Journal of Food Science and Biotechnology, vol. 25, no. 6, pp. 73–78, 2006. View at Google Scholar
  18. A. Yamatsu, R. Matsumi, H. Atomi, and T. Imanaka, “Isolation and characterization of a novel poly (vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3,” Applied Microbiology and Biotechnology, vol. 72, no. 4, pp. 804–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Finley, “Spectrophotometric determination of polyvinyl alcohol in paper coatings,” Analytical Chemistry, vol. 33, no. 13, pp. 1925–1927, 1961. View at Google Scholar · View at Scopus
  20. T. Mori, M. Sakimoto, T. Kagi, and T. Sakai, “Isolation and characterization of a strain of Bacillus megaterium that degrades poly (vinyl alcohol),” Bioscience, Biotechnology and Biochemistry, vol. 60, no. 2, pp. 330–332, 1996. View at Google Scholar · View at Scopus
  21. J. Jae-Young, P. Pyo-Jam, W. K. Jung, and S. K. Kim, “Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods,” Food Chemistry, vol. 91, no. 1, pp. 15–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Fujita and S. Hashimoto, “Isolation of a bacterium requiring three amino acid for polyvinyl alcohol degradation,” Journal of Fermentation Technology, vol. 63, no. 5, pp. 471–474, 1985. View at Google Scholar
  23. Y. Li, Principles and Technology of Fermentation Engineering, Higher Education Press, Beijing, China, 2007.
  24. J. Wu, Z. Y. Ding, and K. C. Zhang, “Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture,” Enzyme and Microbial Technology, vol. 39, no. 4, pp. 743–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Tang, X. Y. Liao, D. X. Zhang et al., “Enhanced production of poly(vinyl alcohol)-degrading enzymes by mixed microbial culture using 1,4-butanediol and designed fermentation strategies,” Polymer Degradation and Stability, vol. 95, no. 4, pp. 557–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhang, Y. Li, and J. Chen, “Effects of nutrition condition on producing polyvinyl alcohol (PVA) degrading enzyme by Penicillium sp.,” Acta Microbiologica Sinica, vol. 44, no. 5, pp. 650–653, 2004. View at Google Scholar