Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 217861, 11 pages
http://dx.doi.org/10.4061/2011/217861
Review Article

Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

Department of Biotechnology, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh 202001, India

Received 25 January 2011; Revised 30 March 2011; Accepted 16 April 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 Shraddha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. R. Williamson, “Biochemical and molecular characterization of the diphenol oxidase of cryptococcus neoformans: identification as a laccase,” Journal of Bacteriology, vol. 176, no. 3, pp. 656–664, 1994. View at Google Scholar
  2. S. R. Couto and J. L. Toca Herrera, “Industrial and biotechnological applications of laccases: a review,” Biotechnology Advances, vol. 24, no. 5, pp. 500–513, 2006. View at Publisher · View at Google Scholar · View at PubMed
  3. L. Gianfreda, F. Xu, and J. M. Bollag, “Laccases: a useful group of oxidoreductive enzymes,” Bioremediation Journal, vol. 3, no. 1, pp. 1–25, 1999. View at Google Scholar
  4. J. Faccelo and O. Cruz, Banana skin: a novel material for a low-cost production of laccase, M.S. thesis, Universitat Rovira I Virgili, 2008.
  5. C. Eggert, U. Temp, J. F. D. Dean, and K. E. L. Eriksson, “A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase,” FEBS Letters, vol. 391, no. 1-2, pp. 144–148, 1996. View at Publisher · View at Google Scholar
  6. M. E. Arias, M. Arenas, J. Rodr íguez, J. Soliveri, A. S. Ball, and M. Hernández, “Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335,” Applied and Environmental Microbiology, vol. 69, no. 4, pp. 1953–1958, 2003. View at Publisher · View at Google Scholar
  7. N. Jimenez-Juarez, R. Roman-Miranda, A. Baeza, A. Sánchez-Amat, R. Vazquez-Duhalt, and B. Valderrama, “Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea,” Journal of Biotechnology, vol. 117, no. 1, pp. 73–82, 2005. View at Google Scholar
  8. G. D. Thakker, C. S. Evans, and K. Koteswara Rao, “Purification and characterization of laccase from Monocillium indicum Saxena,” Applied Microbiology and Biotechnology, vol. 37, no. 3, pp. 321–323, 1992. View at Publisher · View at Google Scholar
  9. B. Viswanath, M. Subhosh Chandra, H. Pallavi, and B. Rajasekhar Reddy, “Screening and assessment of laccase producing fungi isolated from different environmental samples,” African Journal of Biotechnology, vol. 7, no. 8, pp. 1129–1133, 2008. View at Google Scholar
  10. L. L. Kiiskinen, K. Kruus, M. Bailey, E. Ylösmäki, M. Siika-aho, and M. Saloheimo, “Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme,” Microbiology, vol. 150, no. 9, pp. 3065–3074, 2004. View at Publisher · View at Google Scholar · View at PubMed
  11. L. L. Kiiskinen, M. Rättö, and K. Kruus, “Screening for novel laccase-producing microbes,” Journal of Applied Microbiology, vol. 97, no. 3, pp. 640–646, 2004. View at Publisher · View at Google Scholar · View at PubMed
  12. M. L. Niku-Paavola, E. Karhunen, P. Salola, and V. Raunio, “Ligninolytic enzymes of the white-rot fungus Phlebia radiata,” Biochemical Journal, vol. 254, no. 3, pp. 877–884, 1988. View at Google Scholar
  13. G. Palmieri, P. Giardina, C. Bianco, B. Fontallella, and G. Sannina, “Copper induction of laccase isoenzyme in the lignolytic fungus Pleurotus ostreatus,” Appl Microbiol Biotechnol, vol. 66, pp. 920–924, 2000. View at Google Scholar
  14. R. Bourbonnais, M. G. Paice, I. D. Reid, P. Lanthier, and M. Yaguchi, “Lignin oxidation by laccase isozymes from Trametes versicolorand role of the mediator 2,22 -azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1876–1880, 1995. View at Google Scholar
  15. U. Hölker, J. Dohse, and M. Höfer, “Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum,” Folia Microbiologica, vol. 47, no. 4, pp. 423–427, 2002. View at Google Scholar
  16. M. A. Velázquez-Cedeño, A. M. Farnet, E. Ferré, and J. M. Savoie, “Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw,” Mycologia, vol. 96, no. 4, pp. 712–719, 2004. View at Google Scholar
  17. C. Eggert, U. Temp, and K. E. L. Eriksson, “The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase,” Applied and Environmental Microbiology, vol. 62, no. 4, pp. 1151–1158, 1996. View at Google Scholar
  18. S. B. Pointing and L. L. P. Vrijmoed, “Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase,” World Journal of Microbiology and Biotechnology, vol. 16, no. 3, pp. 317–318, 2000. View at Publisher · View at Google Scholar
  19. C. F. Thurston, “The structure and function of fungal laccases,” Microbiology, vol. 140, no. 1, pp. 19–26, 1994. View at Google Scholar
  20. D. S. Yaver, R. M. Berka, S. H. Brown, and F. Xu, The Presymposium on Recent Advances in Lignin Biodegradation and Biosynthesis, vol. 3-4 of Vikki Biocentre, Vikki Biocentre, University of Helsinki, Helsinki, Finland, 2001.
  21. R. Bourbonnais and M. G. Paice, “Oxidation of non-phenolic substrates. An expended role for laccase in lignin biodegradation,” FEBS Letters, vol. 267, no. 1, pp. 99–102, 1990. View at Publisher · View at Google Scholar
  22. L. Quintanar, J. Yoon, C. P. Aznar et al., “Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation,” Journal of the American Chemical Society, vol. 127, no. 40, pp. 13832–13845, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. G. Zoppellaro, H. W. Huang, and T. Sakurai, “Kinetic studies on the reaction of the fully reduced laccase with dioxygen,” Inorganic Reaction Mechanisms, vol. 2, pp. 79–84, 2000. View at Google Scholar
  24. V. K. Gochev and A. I. Krastanov, “Fungal laccases,” Bulgarian Journal of Agricultural Science, vol. 13, pp. 75–83, 2007. View at Google Scholar
  25. H. Agematu, T. Tsuchida, K. Kominato et al., “Enzymatic dimerization of penicillin X,” Journal of Antibiotics, vol. 46, no. 1, pp. 141–148, 1993. View at Google Scholar
  26. O. V. Morozova, G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, and A. I. Yaropolov, “Blue laccases,” Biochemistry (Moscow), vol. 72, no. 10, pp. 1136–1150, 2007. View at Publisher · View at Google Scholar
  27. A. Abdel-Raheem and C. A. Shearer, “Extracellular enzyme production by freshwater ascomycetes,” Fungal Diversity, vol. 11, pp. 1–19, 2002. View at Google Scholar
  28. U. C. Banerjee and R. M. Vohra, “Production of laccase by Curvularia sp,” Folia Microbiologica, vol. 36, no. 4, pp. 343–346, 1991. View at Publisher · View at Google Scholar
  29. C. Junghanns, M. Moeder, G. Krauss, C. Martin, and D. Schlosser, “Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases,” Microbiology, vol. 151, no. 1, pp. 45–57, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. A. Rodríguez, M. A. Falcón, A. Carnicero, F. Perestelo, G. De La Fuente, and J. Trojanowski, “Laccase activities of Penicillium chrysogenum chrysogenum in relation to lignin degradation,” Applied Microbiology and Biotechnology, vol. 45, no. 3, pp. 399–403, 1996. View at Publisher · View at Google Scholar
  31. M. Scherer and R. Fischer, “Purification and characterization of laccase II of Aspergillus nidulans,” Archives of Microbiology, vol. 170, no. 2, pp. 78–84, 1998. View at Publisher · View at Google Scholar
  32. T. Binz and G. Canevascini, “Purification and partial characterization of the extracellular laccase from Ophiostoma novo-ulmi,” Current Microbiology, vol. 35, no. 5, pp. 278–281, 1997. View at Publisher · View at Google Scholar
  33. W. A. Edens, T. Q. Goins, D. Dooley, and J. M. Henson, “Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici,” Applied and Environmental Microbiology, vol. 65, no. 7, pp. 3071–3074, 1999. View at Google Scholar
  34. S. C. Froehner and K. E. Eriksson, “Purification and properties of Neurospora crassa laccase,” Journal of Bacteriology, vol. 120, no. 1, pp. 458–465, 1974. View at Google Scholar
  35. G. Iyer and B. B. Chattoo, “Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea,” FEMS Microbiology Letters, vol. 227, no. 1, pp. 121–126, 2003. View at Publisher · View at Google Scholar
  36. L. L. Kiiskinen, L. Viikari, and K. Kruus, “Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces,” Applied Microbiology and Biotechnology, vol. 59, no. 2-3, pp. 198–204, 2002. View at Publisher · View at Google Scholar · View at PubMed
  37. H. P. Molitoris and K. Esser, “The phenoloxidases of the ascomycete Podospora anserina. v. Properties of laccase I after further purification,” Archives of Microbiology, vol. 72, no. 3, pp. 267–296, 1970. View at Publisher · View at Google Scholar
  38. H. Palonen, M. Saloheimo, L. Viikari, and K. Kruus, “Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp,” Enzyme and Microbial Technology, vol. 33, no. 6, pp. 854–862, 2003. View at Publisher · View at Google Scholar
  39. A. F. D. Vasconcelos, A. M. Barbosa, R. F. H. Dekker, I. S. Scarminio, and M. I. Rezende, “Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method,” Process Biochemistry, vol. 35, no. 10, pp. 1131–1138, 2000. View at Publisher · View at Google Scholar
  40. J. I. Lyons, S. Y. Newell, A. Buchan, and M. A. Moran, “Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh,” Microbial Ecology, vol. 45, no. 3, pp. 270–281, 2003. View at Publisher · View at Google Scholar · View at PubMed
  41. C. Stoj and D. J. Kosman, “Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function,” FEBS Letters, vol. 554, no. 3, pp. 422–426, 2003. View at Publisher · View at Google Scholar
  42. A. Hatakka, “Biodegradation of lignin,” in Lignin, Humic Substances and Coal, M. Hofrichter and A. Steinbuchel, Eds., pp. 129–179, Wiley-VCH, Weinheim, Germany, 2001. View at Google Scholar
  43. K. H. Lee, S. G. Wi, A. P. Singh, and Y. S. Kim, “Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana,” Journal of Wood Science, vol. 50, no. 3, pp. 281–284, 2004. View at Google Scholar
  44. D. Schlosser and C. Höfer, “Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase,” Applied and Environmental Microbiology, vol. 68, no. 7, pp. 3514–3521, 2002. View at Publisher · View at Google Scholar
  45. R. Gayazov and J. Rodakiewicz-Nowak, “Semi-continuous production of laccase by Phlebia radiata in different culture media,” Folia Microbiologica, vol. 41, no. 6, pp. 480–484, 1996. View at Google Scholar
  46. P. Keyser, T. K. Kirk, and J. G. Zeikus, “Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation,” Journal of Bacteriology, vol. 135, no. 3, pp. 790–797, 1978. View at Google Scholar
  47. G. F. Leatham and T. Kent Kirk, “Regulation of ligninolytic activity by nutrient nitrogen in white-rot basidiomycetes,” FEMS Microbiology Letters, vol. 16, no. 1, pp. 65–67, 1983. View at Publisher · View at Google Scholar
  48. M. C. Monteiro and M. E. A. De Carvalho, “Pulp bleaching using laccase from Trametes versacolor under high temperature and alkaline conditions,” Applied Biochemistry and Biotechnology, vol. 70–72, p. 983, 1998. View at Google Scholar
  49. J. A. Buswell, Y. Cai, and S. T. Chang, “Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes,” FEMS Microbiology Letters, vol. 128, no. 1, pp. 81–88, 1995. View at Publisher · View at Google Scholar
  50. S. B. Pointing, E. B. G. Jones, and L. L. P. Vrijmoed, “Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture,” Mycologia, vol. 92, no. 1, pp. 139–144, 2000. View at Google Scholar
  51. A. M. Farnet, S. Criquet, S. Tagger, G. Gil, and J. Le Petit, “Purification, partial characterization, and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17,” Canadian Journal of Microbiology, vol. 46, no. 3, pp. 189–194, 2000. View at Google Scholar
  52. G. Palmieri, P. Giardina, L. Marzullo et al., “Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus,” Applied Microbiology and Biotechnology, vol. 39, no. 4-5, pp. 632–636, 1993. View at Google Scholar
  53. G. S. Nyanhongo, J. Gomes, G. Gübitz, R. Zvauya, J. S. Read, and W. Steiner, “Production of laccase by a newly isolated strain of Trametes modesta,” Bioresource Technology, vol. 84, no. 3, pp. 259–263, 2002. View at Publisher · View at Google Scholar
  54. A. Kunamneni, A. Ballesteros, F. J. Plou, and M. Alcalde, “Fungal laccase-a versatile enzyme for biotechnological applications,” in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Mendez-Vilas, Ed., vol. 1, pp. 233–245, Formex, Badajoz, Spain, 2007. View at Google Scholar
  55. L. Cordi, R. C. Minussi, R. S. Freire, and N. Durán, “Fungal laccase: copper induction, semi-purification, immobilization, phenolic effluent treatment and electrochemical measurement,” African Journal of Biotechnology, vol. 6, no. 10, pp. 1255–1259, 2007. View at Google Scholar
  56. M. J. Han, H. T. Choi, and H. G. Song, “Purification and characterization of laccase from the white rot fungus Trametes versicolor,” Journal of Microbiology, vol. 43, no. 6, pp. 555–560, 2005. View at Google Scholar
  57. V. S. Valeriano, A. M. F. Silva, M. F. Santiago, M. T. F. Bara, and T. A. Garcia, “Production of laccase by Pycnoporus sanguineus using 2,5-xylidine and ethanol,” Brazilian Journal of Microbiology, vol. 40, no. 4, pp. 790–794, 2009. View at Google Scholar
  58. J. Hess, C. Leitner, C. Galhaup et al., “Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor,” Applied Biochemistry and Biotechnology—Part A Enzyme Engineering and Biotechnology, vol. 98-100, pp. 229–241, 2002. View at Publisher · View at Google Scholar
  59. M. Mohorčič, J. Friedrich, and A. Pavko, “Decolourization of the diazo dye reactive black 5 by immobilised Bjerkundera adusta in a stirred tank bioreactor,” Acta Chimica Slovenica, vol. 51, no. 4, pp. 619–628, 2004. View at Google Scholar
  60. A. P. M. Tavares, M. A. Z. Coelho, M. S. M. Agapito, J. A. P. Coutinho, and A. M. R. B. Xavier, “Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design,” Applied Biochemistry and Biotechnology, vol. 134, no. 3, pp. 233–248, 2006. View at Publisher · View at Google Scholar
  61. M. Heinzkill, L. Bech, T. Halkier, P. Schneider, and T. Anke, “Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae),” Applied and Environmental Microbiology, vol. 64, no. 5, pp. 1601–1606, 1998. View at Google Scholar
  62. I. Y. Lee, K. H. Jung, C. H. Lee, and Y. H. Park, “Enhanced production of laccase in Trametes vesicolor by the addition of ethanol,” Biotechnology Letters, vol. 21, no. 11, pp. 965–968, 1999. View at Publisher · View at Google Scholar
  63. A. M. R. B. Xavier, D. V. Evtuguin, R. M. P. Ferreira, and F. L. Amado, “Laccase production for lignin oxidase activity,” in Proceedings of the 8th International Conference on Biotechnology, Helsinki, Finland, 2001.
  64. J. M. Bollag and A. Leonowicz, “Comparative studies of extracellular fungal laccases,” Applied and Environmental Microbiology, vol. 48, no. 4, pp. 849–854, 1984. View at Google Scholar
  65. A. M. Barbosa, R. F. H. Dekker, and G. E. St. Hardy, “Veratryl alcohol as an inducer of laccase by an ascomycete, botryosphaeria sp., when screened on the polymeric dye poly R-478,” Letters in Applied Microbiology, vol. 23, no. 2, pp. 93–96, 1996. View at Google Scholar
  66. V. Faraco, P. Giardina, G. Palmieri, and G. Sannia, “Metal-activated laccase promoters,” Progress in Biotechnology, vol. 21, pp. 105–111, 2002. View at Publisher · View at Google Scholar
  67. I. Robene-Soustrade and B. Lung-Escarmant, “Laccase isoenzyme patterns of European Armillaria species from culture filtrates and infected woody plant tissues,” European Journal of Forest Pathology, vol. 27, no. 2, pp. 105–114, 1997. View at Publisher · View at Google Scholar
  68. S. X. F. Lu, C. L. Jones, and G. T. Lonergan, “Correlation between fungal morphology and laccase expression under the influence of cellobiose induction,” in Proceedings of the 10th International Biotechnology Symposium and 9th International Symposium on Yeasts, Sydney, Australia, 1996.
  69. A. Assavanig, B. Amornkitticharoen, N. Ekpaisal, V. Meevootisom, and T. W. Flegel, “Isolation, characterization and function of laccase from Trichoderma,” Applied Microbiology and Biotechnology, vol. 38, no. 2, pp. 198–202, 1992. View at Google Scholar
  70. P. Tong, Y. Hong, Y. Xiao, M. Zhang, X. Tu, and T. Cui, “High production of laccase by a new basidiomycete,” Biotechnology Letters, vol. 29, no. 2, pp. 295–301, 2007. View at Publisher · View at Google Scholar · View at PubMed
  71. D. D'Souza-Ticlo, D. Sharma, and C. Raghukumar, “A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus,” Marine Biotechnology, vol. 11, no. 6, pp. 725–737, 2009. View at Publisher · View at Google Scholar · View at PubMed
  72. E. Dubé, F. Shareck, Y. Hurtubise, C. Daneault, and M. Beauregard, “Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye,” Applied Microbiology and Biotechnology, vol. 79, no. 4, pp. 597–603, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. P. Blánquez, G. Caminal, M. Sarrà, and T. Vicent, “The effect of HRT on the decolourisation of the grey lanaset G textile dye by Trametes versicolor,” Chemical Engineering Journal, vol. 126, no. 2-3, pp. 163–169, 2007. View at Publisher · View at Google Scholar
  74. P. Blánquez, N. Casas, X. Font et al., “Mechanism of textile metal dye biotransformation by Trametes versicolor,” Water Research, vol. 38, no. 8, pp. 2166–2172, 2004. View at Publisher · View at Google Scholar · View at PubMed
  75. P. Blánquez, M. Sarrà, and M. T. Vicent, “Study of the cellular retention time and the partial biomass renovation in a fungal decolourisation continuous process,” Water Research, vol. 40, no. 8, pp. 1650–1656, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. J. M. Lema, E. Roca, A. Sanroman, M. J. Nunez, M. T. Moreira, and G. Feijoo, “Pulsating bioreactors,” in Multiphase Bioreactor Design, J. M. S. Cabral, M. Mota, and J. Tramper, Eds., pp. 309–329, Taylor and Francis, London, UK, 2001. View at Google Scholar
  77. S. Romero, P. Blánquez, G. Caminal et al., “Different approaches to improving the textile dye degradation capacity of Trametes versicolor,” Biochemical Engineering Journal, vol. 31, no. 1, pp. 42–47, 2006. View at Publisher · View at Google Scholar
  78. A. K. Luke and S. G. Burton, “A novel application for Neurospora crassa: progress from batch culture to a membrane bioreactor for the bioremediation of phenols,” Enzyme and Microbial Technology, vol. 29, no. 6-7, pp. 348–356, 2001. View at Publisher · View at Google Scholar
  79. S. R. Couto, M. A. Sanromán, D. Hofer, and G. M. Gübitz, “Stainless steel sponge: a novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes,” Bioresource Technology, vol. 95, no. 1, pp. 67–72, 2004. View at Publisher · View at Google Scholar · View at PubMed
  80. S. R. Couto, M. A. Sanromán, D. Hofer, and G. M. Gübitz, “Production of laccase by Trametes hirsuta grown in an immersion bioreactor and its application in the decolorization of dyes from a leather factory,” Engineering in Life Sciences, vol. 4, no. 3, pp. 233–238, 2004. View at Publisher · View at Google Scholar
  81. M. R. Sedarati, T. Keshavarz, A. A. Leontievsky, and C. S. Evans, “Transformation of high concentrations of chlorophenols by the white-rot basidiomycete Trametes versicolor immobilized on nylon mesh,” Electronic Journal of Biotechnology, vol. 6, no. 2, pp. 27–37, 2003. View at Google Scholar
  82. K. Brijwani, H. S. Oberoi, and P. V. Vadlani, “Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran,” Process Biochemistry, vol. 45, no. 1, pp. 120–128, 2010. View at Publisher · View at Google Scholar
  83. S. R. Couto and M. A. Sanromán, “Application of solid-state fermentation to ligninolytic enzyme production,” Biochemical Engineering Journal, vol. 22, no. 3, pp. 211–219, 2005. View at Publisher · View at Google Scholar
  84. M. Moo-Young, A. R. Moreira, and R. P. Tengerdy, “Principles of solid sate fermentation: the filamentous fungi,” J. E. Smith, D. R. Berry, and B. Kristiansen, Eds., pp. 117–144, Edward Arnold, London, UK, 1983. View at Google Scholar
  85. A. Pandey, P. Selvakumar, C. R. Soccol, and P. Nigam, “Solid state fermentation for the production of industrial enzymes,” Current Science, vol. 77, no. 1, pp. 149–162, 1999. View at Google Scholar
  86. S. R. Couto and J. L. Toca-Herrera, “Laccase production at reactor scale by filamentous fungi,” Biotechnology Advances, vol. 25, no. 6, pp. 558–569, 2007. View at Publisher · View at Google Scholar · View at PubMed
  87. S. R. Couto, D. Moldes, A. Liébanas, and A. Sanromán, “Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions,” Biochemical Engineering Journal, vol. 15, no. 1, pp. 21–26, 2003. View at Publisher · View at Google Scholar
  88. S. R. Couto, E. López, and M. A. Sanromán, “Utilisation of grape seeds for laccase production in solid-state fermentors,” Journal of Food Engineering, vol. 74, no. 2, pp. 263–267, 2006. View at Publisher · View at Google Scholar
  89. E. Rosales, S. R. Couto, and M. A. Sanromán, “Increased laccase production by Trametes hirsuta grown on ground orange peelings,” Enzyme and Microbial Technology, vol. 40, no. 5, pp. 1286–1290, 2007. View at Publisher · View at Google Scholar
  90. C. Muñoz, F. Guillén, A. T. Martínez, and M. J. Martínez, “Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii,” Current Microbiology, vol. 34, no. 1, pp. 1–5, 1997. View at Publisher · View at Google Scholar
  91. M. Lorenzo, D. Moldes, S. R. Couto, and A. Sanromán, “Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor,” Bioresource Technology, vol. 82, no. 2, pp. 109–113, 2002. View at Publisher · View at Google Scholar
  92. S. S. Kahraman and I. H. Gurdal, “Effect of synthetic and natural culture media on laccase production by white rot fungi,” Bioresource Technology, vol. 82, no. 3, pp. 215–217, 2002. View at Publisher · View at Google Scholar
  93. C. Souza, A. Zilly, and R. M. Peralta, “Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus pulmonarius in solid state fermentation,” Journal of Basic Microbiology, vol. 42, no. 2, pp. 83–90, 2002. View at Publisher · View at Google Scholar
  94. E. Grotewold, G. E. Taccioli, G. O. Aisemberg, and N. D. Judewicz, “Purification of an extracellular fungal laccase,” Mircen Journal of Applied Microbiology and Biotechnology, vol. 4, pp. 357–363, 1998. View at Publisher · View at Google Scholar
  95. S. Khammuang and R. Sarnthima, “Laccase activity from fresh fruiting bodies of Ganoderma sp. MK05: purification and remazol brilliant blue R decolorization,” Journal of Biological Sciences, vol. 9, no. 1, pp. 83–87, 2009. View at Publisher · View at Google Scholar
  96. A. Domínguez, S. R. Couto, and M. A. Sanromán, “Dye decolorization by Trametes hirsuta immobilized into alginate beads,” World Journal of Microbiology and Biotechnology, vol. 21, no. 4, pp. 405–409, 2005. View at Publisher · View at Google Scholar
  97. H. Hou, J. Zhou, J. Wang, C. Du, and B. Yan, “Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye,” Process Biochemistry, vol. 39, no. 11, pp. 1415–1419, 2004. View at Publisher · View at Google Scholar
  98. P. Blánquez, N. Casas, X. Font et al., “Mechanism of textile metal dye biotransformation by Trametes versicolor,” Water Research, vol. 38, no. 8, pp. 2166–2172, 2004. View at Publisher · View at Google Scholar · View at PubMed
  99. J. A. Ramsay and T. Nguyen, “Decolourization of textile dyes by Trametes versicolour and its effect on dye toxicity,” Biotechnology Letters, vol. 24, pp. 1757–1761, 2002. View at Google Scholar
  100. M. S. Roriz, J. F. Osma, J. A. Teixeira, and S. R. Couto, “Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens,” Journal of Hazardous Materials, vol. 169, no. 1-3, pp. 691–696, 2009. View at Publisher · View at Google Scholar · View at PubMed
  101. A. Ünal and N. Kolankaya, “Dechlorination of bleached kraft pulp by laccase enzyme produced from some white-rot fungi,” Turkish Electronic Journal of Biotechnology, vol. 25, pp. 67–72, 2001. View at Google Scholar
  102. S. Riva, “Laccases: blue enzymes for green chemistry,” Trends in Biotechnology, vol. 24, no. 5, pp. 219–226, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. A. C. Bastos and N. Magan, “Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions,” International Biodeterioration and Biodegradation, vol. 63, no. 4, pp. 389–394, 2009. View at Publisher · View at Google Scholar
  104. Y. S. Keum and Q. X. Li, “Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls,” Chemosphere, vol. 56, no. 1, pp. 23–30, 2004. View at Publisher · View at Google Scholar · View at PubMed
  105. C. Udayasoorian and P. C. Prabu, “Biodegradation of phenols by lignolytic fungus Trametes versicolour,” Journal of Biological Sciences, vol. 5, pp. 824–827, 2005. View at Google Scholar
  106. M. Y. Ahn, J. Dec, J. E. Kim, and J. M. Bollag, “Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1509–1515, 2002. View at Google Scholar
  107. V. Madhavi and S. S. Lele, “Laccase: properties and applications,” BioResources, vol. 4, no. 4, pp. 1694–1717, 2009. View at Google Scholar
  108. T. E. Mathiasen, “Laccase and beer storage,” PCT international application, WO 9521240 A2, 1995.
  109. R. C. Minussi, G. M. Pastore, and N. Durán, “Potential applications of laccase in the food industry,” Trends in Food Science and Technology, vol. 13, no. 6-7, pp. 205–216, 2002. View at Publisher · View at Google Scholar
  110. D. S. Ribeiro, S. M.B. Henrique, L. S. Oliveira, G. A. Macedo, and L. F. Fleuri, “Enzymes in juice processing: a review,” International Journal of Food Science and Technology, vol. 45, no. 4, pp. 635–641, 2010. View at Publisher · View at Google Scholar
  111. R. C. Minussi, M. Rossi, L. Bologna, D. Rotilio, G. M. Pastore, and N. Durán, “Phenols removal in musts: strategy for wine stabilization by laccase,” Journal of Molecular Catalysis B: Enzymatic, vol. 45, no. 3-4, pp. 102–107, 2007. View at Publisher · View at Google Scholar
  112. P. K. Thassitou and I. S. Arvanitoyannis, “Bioremediation: a novel approach to food waste management,” Trends in Food Science and Technology, vol. 12, no. 5-6, pp. 185–196, 2001. View at Publisher · View at Google Scholar
  113. S. Yagüe, M. C. Terrón, T. González et al., “Biotreatment of tannin-rich beer-factory wastewater with white-rot basidiomycete coriolopsis gallica monitored by pyrolysis/gas chromatography/mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 14, no. 10, pp. 905–910, 2000. View at Publisher · View at Google Scholar
  114. T. González, M. C. Terrón, S. Yagüe, E. Zapico, G. C. Galletti, and A. E. González, “Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197),” Rapid Communications in Mass Spectrometry, vol. 14, no. 15, pp. 1417–1424, 2000. View at Publisher · View at Google Scholar
  115. J. Karam and J. A. Nicell, “Potential applications of enzymes in waste treatment,” Journal of Chemical Technology and Biotechnology, vol. 69, no. 2, pp. 141–153, 1997. View at Publisher · View at Google Scholar
  116. B. R. Thomas, M. Yonekura, T. D. Morgan, T. H. Czapla, T. L. Hopkins, and K. J. Kramer, “A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta,” Insect Biochemistry, vol. 19, no. 7, pp. 611–622, 1989. View at Google Scholar
  117. H. I. Yamazaki, “Cuticular phenoloxidase from the silkworm, bombyx mori: properties, solubilization, and purification,” Insect Biochemistry, vol. 2, no. 8, pp. 431–444, 1972. View at Google Scholar
  118. S. O. Andersen, M. G. Peter, and P. Roepstorff, “Cuticular sclerotization in insects,” Comparative Biochemistry and Physiology, vol. 113, no. 4, pp. 689–705, 1996. View at Publisher · View at Google Scholar
  119. M. Sugumaran, L. Giglio, H. Kundzicz, S. Saul, and V. Semensi, “Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster,” Archives of insect biochemistry and physiology, vol. 19, no. 4, pp. 271–283, 1992. View at Google Scholar
  120. Y. Arakane, S. Muthukrishnan, R. W. Beeman, M. R. Kanost, and K. J. Kramer, “Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning,” Proceedings of The National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11337–11342, 2005. View at Publisher · View at Google Scholar · View at PubMed
  121. N. T. Dittmer, R. J. Suderman, H. Jiang et al., “Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, manduca sexta, and the malaria mosquito, anopheles gambiae,” Insect Biochemistry and Molecular Biology, vol. 34, no. 1, pp. 29–41, 2004. View at Publisher · View at Google Scholar
  122. M. Elias-Neto, M. P. M. Soares, Z. L. P. Simões, K. Hartfelder, and M. M. G. Bitondi, “Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, apis mellifera (Hymenoptera, Apinae),” Insect Biochemistry and Molecular Biology, vol. 40, no. 3, pp. 241–251, 2010. View at Publisher · View at Google Scholar · View at PubMed
  123. B. L. Niu, W. F. Shen, Y. Liu et al., “Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus,” Insect Molecular Biology, vol. 17, no. 3, pp. 303–312, 2008. View at Publisher · View at Google Scholar · View at PubMed
  124. N. M. Parkinson, C. M. Conyers, J. N. Keen, A. D. MacNicoll, I. Smith, and R. J. Weaver, “cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis,” Comparative Biochemistry and Physiology, vol. 134, no. 4, pp. 513–520, 2003. View at Publisher · View at Google Scholar
  125. N. T. Dittmer and M. R. Kanost, “Insect multicopper oxidases: diversity, properties, and physiological roles,” Insect Biochemistry and Molecular Biology, vol. 40, no. 3, pp. 179–188, 2010. View at Publisher · View at Google Scholar · View at PubMed
  126. M. Hattori, K. Tsuchihara, H. Noda et al., “Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae),” Insect Biochemistry and Molecular Biology, vol. 40, no. 4, pp. 331–338, 2010. View at Publisher · View at Google Scholar · View at PubMed
  127. M. J. Gorman, N. T. Dittmer, J. L. Marshall, and M. R. Kanost, “Characterization of the multicopper oxidase gene family in Anopheles gambiae,” Insect Biochemistry and Molecular Biology, vol. 38, no. 9, pp. 817–824, 2008. View at Publisher · View at Google Scholar · View at PubMed
  128. M. Hattori, H. Konishi, Y. Tamura, K. Konno, and K. Sogawa, “Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps,” Journal of Insect Physiology, vol. 51, no. 12, pp. 1359–1365, 2005. View at Publisher · View at Google Scholar · View at PubMed
  129. K. Sogawa, “Studies of the salivary glands of rice leafhoppers. III. Salivary phenolase,” Appl. Entomol. Zool., vol. 3, pp. 13–25, 1968. View at Google Scholar
  130. P. Peralta-Zamora, C. M. Pereira, E. R. L. Tiburtius et al., “Decolorization of reactive dyes by immobilized laccase,” Applied Catalysis B, vol. 42, no. 2, pp. 131–144, 2003. View at Publisher · View at Google Scholar
  131. R. C. Minussi, M. A. Miranda, J. A. Silva et al., “Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole,” African Journal of Biotechnology, vol. 6, no. 10, pp. 1248–1254, 2007. View at Google Scholar
  132. K. M. Alimin Abdul and M. S. M. Annuar, “Novel application of coconut husk as growth support matrix and natural inducer of fungal laccase production in a bubble column reactor,” Asia-Pacific Journal of Molecular Biology and Biotechnology, vol. 17, no. 2, pp. 47–52, 2009. View at Google Scholar