Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 340279, 6 pages
http://dx.doi.org/10.4061/2011/340279
Research Article

Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum

1Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
2Department of Biotechnology and Environmental Sciences, Thaper University, Bhadson Road, Patiala 140007, Punjab, India

Received 1 March 2011; Revised 20 May 2011; Accepted 21 May 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 Ruchi Mutreja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Oliveira, B. E. Vaughan, and E. J. Rykiel, “Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint,” BioScience, vol. 55, no. 7, pp. 593–602, 2005. View at Google Scholar · View at Scopus
  2. H. Shapouri and P. Gallagher, “USDA's 2002 ethanol cost-of-production survey,” USDA Agricultural Economic Report 841, 2009, http://www.usda.gov/oce/reports/energy/USDA_2002_ETHANOL.pdf. View at Google Scholar
  3. B. Mahro and M. Timm, “Potential of biowaste from the food industry as a biomass resource,” Engineering in Life Sciences, vol. 7, no. 5, pp. 457–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. N. Hamelinck, G. F. Van Hooijdonk, and A. P. C. Faaij, “Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term,” Biomass and Bioenergy, vol. 28, no. 4, pp. 384–410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Y. S. Mtui, “Recent advances in pretreatment of lignocellulosic wastes and production of value added products,” African Journal of Biotechnology, vol. 8, no. 8, pp. 1398–1415, 2009. View at Google Scholar · View at Scopus
  6. M. Moniruzzaman, “Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw,” Applied Biochemistry and Biotechnology, vol. 59, no. 3, pp. 283–297, 1996. View at Google Scholar · View at Scopus
  7. O. Kim, B. Magnus, and L. Gunnar, “A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks,” Biotechnology for Biofuels, vol. 1, p. 7, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Pandey, C. R. Soccol, P. P. Nigam, and V. T. Soccol, “Biotechnological potential of agro-industrial residues. I: sugarcane bagasse,” Bioresource Technology, vol. 7, no. 1, pp. 69–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Das and S. Singh, “Useful byproducts from cellulosic wastes of agriculture and food industry—a critical appraisal,” Critical Reviews in Food Science and Nutrition, vol. 44, no. 2, pp. 77–89, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. Foyle, L. Jennings, and P. Mulcahy, “Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw,” Bioresource Technology, vol. 98, no. 16, pp. 3026–3036, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. E. J. Taylor, A. Goyal, C. I. P. D. Guerreiro et al., “How family 26 glycoside hydrolases orchestrate catalysis on different polysaccharides: structure and activity of a Clostridium thermocellum lichenase, CtLic26A,” Journal of Biological Chemistry, vol. 280, no. 38, pp. 32761–32767, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. Sharma, K. L. Kalra, H. S. Oberoi, and S. Bansal, “Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation,” Indian Journal of Microbiology, vol. 47, no. 4, pp. 310–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. C. Okeke and S. K. C. Obi, “Saccharification of agrowaste materials by fungal cellulases and hemicellulases,” Bioresource Technology, vol. 51, no. 1, pp. 23–27, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. H. K. Reddy, M. Srijana, M. D. Reddy, and G. Reddy, “Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2,” African Journal of Biotechnology, vol. 9, no. 13, pp. 1926–1934, 2010. View at Google Scholar · View at Scopus
  15. N. Nelson, “A photometric adaptation of the Somogyi method for the determination of glucose,” Journal of Biological Chemistry, vol. 153, pp. 375–380, 1944. View at Google Scholar
  16. M. Somogyi, “A new reagent for the determination of sugars,” Journal of Biological Chemistry, vol. 160, no. 1, pp. 61–68, 1945. View at Google Scholar · View at Scopus
  17. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  18. H. B. Seo, H. J. Kim, and H. K. Jung, “Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 2, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. Damisa, J. Ameh, and V. J. Umoh, “Effect of chemical pretreatment of some lignocellulosic wastes on the recovery of cellulase from Aspergillus niger AH3 mutant,” African Journal of Biotechnology, vol. 7, no. 14, pp. 2444–2450, 2008. View at Google Scholar · View at Scopus
  20. E. Ruiz, C. Cara, M. Ballesteros, P. Manzanares, I. Ballesteros, and E. Castro, “Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process,” Applied Biochemistry and Biotechnology, vol. 129-132, no. 1–3, pp. 631–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Hernandez-Sales, M. S. Villa-Ramirez, J. S. Veloz-Rendon et al., “Comparative hydrolysis and fermentation of sugarcane and agave bagasse,” Bioresource Technology, vol. 100, pp. 1238–1245, 2009. View at Google Scholar
  22. C. Martín, H. B. Klinke, and A. B. Thomsen, “Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse,” Enzyme and Microbial Technology, vol. 40, no. 3, pp. 426–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. H. El-Refai, M. S. El-Abyad, A. I. El-Diwany, L. A. Sallam, and R. F. Allam, “Some physiological parameters for ethanol production from beet molasses by Saccharomyces cerevisiae Y-7,” Bioresource Technology, vol. 42, no. 3, pp. 183–189, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Verma, P. Nigam, D. Singh, and K. Chaudhary, “Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae,” Bioresource Technology, vol. 72, no. 3, pp. 261–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Sánchez, V. Bravo, A. J. Moya, E. Castro, and F. Camacho, “Influence of temperature on the fermentation of D-xylose by Pachysolen tannophilus to produce ethanol and xylitol,” Process Biochemistry, vol. 39, no. 6, pp. 673–679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. El-Abyad, A. H. El-Refai, A. I. El-Diwany, L. A. Sallam, and R. F. Allam, “Effect of some fermentation parameters on ethanol production from beet molasses by Saccharomyces cerevisiae Y-7,” Bioresource Technology, vol. 42, no. 3, pp. 191–195, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Rudolf, M. Alkasrawi, G. Zacchi, and G. Lidén, “A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce,” Enzyme and Microbial Technology, vol. 37, no. 2, pp. 195–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Sassner, M. Galbe, and G. Zacchi, “Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content,” Enzyme and Microbial Technology, vol. 39, no. 4, pp. 756–762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Linde, M. Galbe, and G. Zacchi, “Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration,” Enzyme and Microbial Technology, vol. 40, no. 5, pp. 1100–1107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Eklund and G. Zacchi, “Simultaneous saccharification and fermentation of steam-pretreated willow,” Enzyme and Microbial Technology, vol. 17, no. 3, pp. 255–259, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Kovacs, M. Stefano, S. George, and Z. Guido, “Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride Trichoderma atroviride enzymes produced in-house,” Biotechnology for Biofuels, vol. 2, p. 14, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus