Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 356093, 16 pages
http://dx.doi.org/10.4061/2011/356093
Review Article

Acid Phosphatases of Budding Yeast as a Model of Choice for Transcription Regulation Research

Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia

Received 28 February 2011; Accepted 26 April 2011

Academic Editor: Hong-Jian Zhu

Copyright © 2011 Elena V. Sambuk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kornberg, N. N. Rao, and D. Ault-Riché, “Inorganic polyphosphate: a molecule of many functions,” Annual Review of Biochemistry, vol. 68, pp. 89–125, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. Y. Oshima, “The phosphatase system in Saccharomyces cerevisiae,” Genes and Genetic Systems, vol. 72, no. 6, pp. 323–334, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. I. S. Kulaev, “Inorganic polyphosphates and its role in evolution,” Educational Soros Journal, vol. 2, pp. 28–35, 1996. View at Google Scholar
  4. T. Rouxel, A. Danchin, and A. Henaut, “METALGEN.DB: metabolism linked to the genome of Escherichia coli, a graphics-oriented database,” Computer Applications in the Biosciences, vol. 9, no. 3, pp. 315–324, 1993. View at Google Scholar · View at Scopus
  5. N. Ogawa, J. DeRisi, and P. O. Brown, “New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis,” Molecular Biology of the Cell, vol. 11, no. 12, pp. 4309–4321, 2000. View at Google Scholar · View at Scopus
  6. J. Veide and T. Andlid, “Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system,” International Journal of Food Microbiology, vol. 108, no. 1, pp. 60–67, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. V. Padkina, N. G. Krasnopevtceva, M. G. Petrashen, S. A. Kozhin, and M. N. Smirnov, “Genetical and biochemical research of acid phosphatases in yeast Saccharomyces cerevisiae. I. Acid phosphatases characteristics,” Genetika, vol. 10, pp. 100–110, 1974. View at Google Scholar
  8. M. V. Padkina, “Nonspecific acid phosphatases of yeast Saccharomyces cerevisiae: regulation of biosynthesis,” Vestnik of Saint-Petersburg State University, vol. 3, no. 4, pp. 52–57, 1998. View at Google Scholar
  9. N. G. Krasnopevtseva, N. A. Urazmanova, and M. V. Padkina, “Genetical and biochemical research of acid phosphatases in yeast Saccharomyces cerevisiae. XII. Yeast repressible acid phosphatases isolation and characteristics,” Vestnik of Saint Petersburg University. Management Series, vol. 3, pp. 98–106, 1986. View at Google Scholar
  10. K. A. Bostian, J. M. Lemire, L. E. Cannon, and H. O. Halvorson, “In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 8, pp. 4504–4508, 1980. View at Google Scholar · View at Scopus
  11. K. Nosaka, H. Nishimura, and A. Iwashima, “Effect of tunicamycin on thiamine transport in Saccharomyces cerevisiae,” Biochimica et Biophysica Acta, vol. 858, no. 2, pp. 309–311, 1986. View at Google Scholar · View at Scopus
  12. M. G. Samsonova, M. V. Padkina, and N. G. Krasnopevtseva, “Genetical and biochemical research of acid phosphatases in yeast Saccharomyces cerevisiae. V. Genetic control of acid phosphatase II synthesis,” Genetika, vol. 11, pp. 104–115, 1975. View at Google Scholar
  13. B. Meyhack, W. Bajwa, H. Rudolph, and A. Hinnen, “Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences,” EMBO Journal, vol. 1, no. 6, pp. 675–680, 1982. View at Google Scholar · View at Scopus
  14. W. Bajwa, B. Meyhack, H. Rudolph, A. M. Schweingruber, and A. Hinnen, “Structural analysis of the two tandemly repeated acid phosphatase genes in yeast,” Nucleic Acids Research, vol. 12, no. 20, pp. 7721–7739, 1984. View at Google Scholar · View at Scopus
  15. P. E. Hansche, “Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae,” Genetics, vol. 79, no. 4, pp. 661–674, 1975. View at Google Scholar · View at Scopus
  16. Y. Tamai, A. Toh-e, and Y. Oshima, “Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 164, no. 2, pp. 964–968, 1985. View at Google Scholar · View at Scopus
  17. B. L. Persson, J. Petersson, U. Fristedt, R. Weinander, A. Berhe, and J. Pattison, “Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation,” Biochimica et Biophysica Acta, vol. 1422, no. 3, pp. 255–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Bun-Ya, M. Nishimura, S. Harashima, and Y. Oshima, “The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter,” Molecular and Cellular Biology, vol. 11, no. 6, pp. 3229–3238, 1991. View at Google Scholar · View at Scopus
  19. M. Lazard, S. Blanquet, P. Fisicaro, G. Labarraque, and P. Plateau, “Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters,” The Journal of Biological Chemistry, vol. 285, no. 42, pp. 32029–32037, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. L. T. Jensen, M. Ajua-Alemanji, and V. C. Culotta, “The Saccharomyces cerevisiae High Affinity Phosphate Transporter Encoded by PHO84 Also Functions in Manganese Homeostasis,” The Journal of Biological Chemistry, vol. 278, no. 43, pp. 42036–42040, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. E. V. Sambuk, V. V. Alenin, and S. A. Kozhin, “Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport,” Genetika, vol. 21, no. 9, pp. 1449–1454, 1985. View at Google Scholar
  22. P. Martinez and B. L. Persson, “Identification, cloning and characterization of a derepressible Na-coupled phosphate transporter in Saccharomyces cerevisiae,” Molecular and General Genetics, vol. 258, no. 6, pp. 628–638, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Bun-ya, S. Harashima, and Y. Oshima, “Putative GTP-binding protein, Gtr1, associated with the function of the PHO84 inorganic phosphate transporter in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 12, no. 7, pp. 2958–2966, 1992. View at Google Scholar · View at Scopus
  24. W. T. W. Lau, R. W. Howson, P. Malkus, R. Schekman, and E. K. O'Shea, “Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 3, pp. 1107–1112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. D. D. Wykoff and E. K. O'Shea, “Phosphate transport and sensing in Saccharomyces cerevisiae,” Genetics, vol. 159, no. 4, pp. 1491–1499, 2001. View at Google Scholar · View at Scopus
  26. R. Serrano, A. Ruiz, D. Bernal, J. R. Chambers, and J. Ariño, “The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling,” Molecular Microbiology, vol. 46, no. 5, pp. 1319–1333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. D. Wykoff, A. H. Rizvi, J. M. Raser, B. Margolin, and E. K. O'Shea, “Positive Feedback Regulates Switching of Phosphate Transporters in S. cerevisiae,” Molecular Cell, vol. 27, no. 6, pp. 1005–1013, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. C. K. Singleton, “Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae,” Gene, vol. 199, no. 1-2, pp. 111–121, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. A. To-E, Y. Ueda, S. I. Kakimoto, and Y. Oshima, “Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 113, no. 2, pp. 727–738, 1973. View at Google Scholar · View at Scopus
  30. M. D. Ter-Avanesyan, S. G. Inge-Vechtomov, and M. G. Petrashen, “Genetical and biochemical research of acid phosphatases in yeast Saccharomyces cerevisiae. II. Research of mutations which influence acid phosphatase 1 activity,” Genetika, vol. 10, no. 12, pp. 101–109, 1974. View at Google Scholar
  31. K. Nosaka, Y. Kaneko, H. Nishimura, and A. Iwashima, “A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast,” FEMS Microbiology Letters, vol. 60, no. 1, pp. 55–60, 1989. View at Google Scholar · View at Scopus
  32. K. Nosaka, H. Nishimura, and A. Iwashima, “Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae,” Yeast, vol. 5, pp. S447–451, 1989. View at Google Scholar · View at Scopus
  33. A. P. Gasch, P. T. Spellman, C. M. Kao et al., “Genomic expression programs in the response of yeast cells to environmental changes,” Molecular Biology of the Cell, vol. 11, no. 12, pp. 4241–4257, 2000. View at Google Scholar · View at Scopus
  34. V. Savinov, A. Rumyancev, A. Fizikova, and E. Sambuk, “The regulators of nitrogen and phosphorus metabolisms affect gene PHO3 expression in yeast Saccharomyces cerevisiae,” Yeast, vol. 24, p. 160, 2009. View at Google Scholar
  35. U. Venter and W. Hörz, “The acid phosphatase genes PHO10 and PHO11 in S. cerevisiae are located at the telomeres of chromosomes VIII and I,” Nucleic Acids Research, vol. 17, no. 4, pp. 1353–1369, 1989. View at Google Scholar · View at Scopus
  36. R. A. Kramer and N. Anderson, “Isolation of yeast genes with mRNA levels controlled by phosphate concentration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 11, pp. 6541–6545, 1980. View at Google Scholar · View at Scopus
  37. H. Rudolph and A. Hinnen, “The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 5, pp. 1340–1344, 1987. View at Google Scholar · View at Scopus
  38. E. A. Toh, S. Kakimoto, and Y. Oshima, “Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae,” Molecular and General Genetics, vol. 143, no. 1, pp. 65–70, 1975. View at Google Scholar · View at Scopus
  39. M. Monod, R. Haguenauer-Tsapis, I. Rauseo-Koenig, and A. Hinnen, “Functional analysis of the signal-sequence processing site of yeast acid phosphatase,” European Journal of Biochemistry, vol. 182, no. 2, pp. 213–221, 1989. View at Google Scholar · View at Scopus
  40. T. Mizunaga, M. Izawa, K. Ikeda, and Y. Maruyama, “Secretion of an active nonglycosylated form of the repressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at low temperatures,” Journal of Biochemistry, vol. 103, no. 2, pp. 321–326, 1988. View at Google Scholar · View at Scopus
  41. M. G. Shnyreva, E. V. Petrova, S. N. Egorov, and A. Hinnen, “Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition,” Microbiological Research, vol. 151, no. 3, pp. 291–300, 1996. View at Google Scholar · View at Scopus
  42. S. Barbaric, T. Luckenbach, A. Schmid, D. Blaschke, W. Hörz, and P. Korber, “Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo,” The Journal of Biological Chemistry, vol. 282, no. 38, pp. 27610–27621, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. C. Auesukaree, H. Tochio, M. Shirakawa, Y. Kaneko, and S. Harashima, “Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 280, no. 26, pp. 25127–25133, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. B. Pinson, S. Vaur, I. Sagot, F. Coulpier, S. Lemoine, and B. Daignan-Fornier, “Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways,” Genes and Development, vol. 23, no. 12, pp. 1399–1407, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. Auesukaree, T. Homma, Y. Kaneko, and S. Harashima, “Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications, vol. 306, no. 4, pp. 843–850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Almer and W. Hörz, “Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast,” EMBO Journal, vol. 5, no. 10, pp. 2681–2687, 1986. View at Google Scholar · View at Scopus
  47. A. Almer, H. Rudolph, A. Hinnen, and W. Hörz, “Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements,” EMBO Journal, vol. 5, no. 10, pp. 2689–2696, 1986. View at Google Scholar · View at Scopus
  48. K. Vogel, W. Horz, and A. Hinnen, “The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions,” Molecular and Cellular Biology, vol. 9, no. 5, pp. 2050–2057, 1989. View at Google Scholar · View at Scopus
  49. J. Svaren and W. Hörz, “Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast,” Trends in Biochemical Sciences, vol. 22, no. 3, pp. 93–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Barbarić, M. Münsterkötter, J. Svaren, and W. Hörz, “The homeodomain protein PHO2 and the basic-helix-loop-helix protein PHO4 bind DNA cooperatively at the yeast PHO5 promoter,” Nucleic Acids Research, vol. 24, no. 22, pp. 4479–4486, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Johnston and M. Carlson, “Regulation of carbon and phosphate utilization of the yeast Saccharomyces cerevisiae,” Molecular and Cellular Biology: Gene Expression, Cold Spring Harbor, New York, NY, USA, pp. 283–317, 1992. View at Google Scholar
  52. M. W. Adkins and J. K. Tyler, “Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions,” Molecular Cell, vol. 21, no. 3, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. A. Schmid, K. D. Fascher, and W. Horz, “Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication,” Cell, vol. 71, no. 5, pp. 853–864, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Svaren, J. Schmitz, and W. Horz, “The transactivation domain of PHO4 is required for nucleosome disruption at the PHO5 promoter,” EMBO Journal, vol. 13, no. 20, pp. 4856–4862, 1994. View at Google Scholar · View at Scopus
  55. L. Gaudreau, A. Schmid, D. Blaschke, M. Ptashne, and W. Hörz, “RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter,” Cell, vol. 89, no. 1, pp. 55–62, 1997. View at Google Scholar · View at Scopus
  56. R. Ohsawa, M. Adkins, and J. K. Tyler, “Epigenetic inheritance of an inducibly nucleosome-depleted promoter and its associated transcriptional state in the apparent absence of transcriptional activators,” Epigenetics Chromatin, vol. 2, no. 1, p. 11, 2009. View at Google Scholar
  57. P. D. Gregory, A. Schmid, M. Zavari, L. Liu, S. L. Berger, and W. Hörz, “Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast,” Molecular Cell, vol. 1, no. 4, pp. 495–505, 1998. View at Google Scholar · View at Scopus
  58. K. Nishimura, K. Yasumura, K. Igarashi, S. Harashima, and Y. Kakinuma, “Transcription of some PHO genes in Saccharomyces cerevisiae is regulated by Spt7p,” Yeast, vol. 15, no. 16, pp. 1711–1717, 1999. View at Google Scholar · View at Scopus
  59. S. Barbaric, H. Reinke, and W. Hörz, “Multiple mechanistically distinct functions of SAGA at the PHO5 promoter,” Molecular and Cellular Biology, vol. 23, no. 10, pp. 3468–3476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. W. T. W. Lau, K. R. Schneider, and E. K. O'Shea, “A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae,” Genetics, vol. 150, no. 4, pp. 1349–1359, 1998. View at Google Scholar · View at Scopus
  61. Y. Popova, P. Thayumanavan, E. Lonati, M. Agrochão, and J. M. Thevelein, “Transport and signaling through the phosphate-binding site of the yeast PHO84 phosphate transceptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2890–2895, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Nishizawa, Y. Kanaya, and A. Toh-e, “Mouse cyclin-dependent kinase (Cdk) 5 is a functional homologue of a yeast Cdk, PHO85 kinase,” The Journal of Biological Chemistry, vol. 274, no. 48, pp. 33859–33862, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Huang, I. Ferrin-O'Connell, W. Zhang, G. A. Leonard, E. K. O'Shea, and F. Quiocho, “Structure of the PHO85-PHO80 CDK-Cyclin Complex of the Phosphate-Responsive Signal Transduction Pathway,” Molecular Cell, vol. 28, no. 4, pp. 614–623, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. W. A. Wilson, A. M. Mahrenholz, and P. J. Roach, “Substrate targeting of the yeast cyclin-dependent kinase PHO85 p by the cyclin Pcl10p,” Molecular and Cellular Biology, vol. 19, no. 10, pp. 7020–7030, 1999. View at Google Scholar · View at Scopus
  65. V. Measday, L. Moore, R. Retnakaran et al., “A family of cyclin-like proteins that interact with the PHO85 cyclin- dependent kinase,” Molecular and Cellular Biology, vol. 17, no. 3, pp. 1212–1223, 1997. View at Google Scholar · View at Scopus
  66. A. Toh-e, K. Tanaka, Y. Uesono, and R. B. Wickner, “PHO85 , a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae,” MGG Molecular & General Genetics, vol. 214, no. 1, pp. 162–164, 1988. View at Publisher · View at Google Scholar · View at Scopus
  67. M. D. Mendenhall and A. E. Hodge, “Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 62, no. 4, pp. 1191–1243, 1998. View at Google Scholar · View at Scopus
  68. Y. Uesono, K. Tanaka, and A. Toh-e, “Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85,” Nucleic Acids Research, vol. 15, no. 24, pp. 10299–10309, 1987. View at Google Scholar
  69. E. V. Sambuk, A. I. Kuchkartaev, M. V. Padkina, and M. N. Smirnov, “Genetic mapping of genes regulating synthesis of acid phosphatases in yeast Saccharomyces cerevisiae of Peterhoff yeast collection,” Genetika, vol. 27, no. 4, pp. 644–648, 1991. View at Google Scholar
  70. E. V. Sambuk, Y. G. Popova, A. Y. Fizikova, and M. V. Padkina, “Genetic analysis of pleiotropic effects of PHO85 mutations in yeast Saccharomyces cerevisiae,” Genetika, vol. 39, no. 8, pp. 1039–1045, 2003. View at Google Scholar
  71. M. E. Lenburg and E. K. O'Shea, “Genetic evidence for a morphogenetic function of the Saccharomyces cerevisiae PHO85 cyclin-dependent kinase,” Genetics, vol. 157, no. 1, pp. 39–51, 2001. View at Google Scholar
  72. J. Zou, H. Friesen, J. Larson et al., “Regulation of cell polarity through phosphorylation of Bni4 by PHO85 G1 cyclin-dependent kinases in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 20, no. 14, pp. 3239–3250, 2009. View at Publisher · View at Google Scholar · View at PubMed
  73. B. K. Timblin, K. Tatchell, and L. W. Bergman, “Deletion of the gene encoding the cyclin-dependent protein kinase PHO85 alters glycogen metabolism in Saccharomyces cerevisiae,” Genetics, vol. 143, no. 1, pp. 57–66, 1996. View at Google Scholar
  74. S. Wickert, M. Finck, B. Herz, and J. F. Ernst, “A small protein (Ags1p) and the Pho80p-Pho85p kinase complex contribute to aminoglycoside antibiotic resistance of the yeast Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 180, no. 7, pp. 1887–1894, 1998. View at Google Scholar
  75. Iu. G. Popova, M. V. Padkina, and E. V. Sambuk, “Effect of mutations in PHO85 and PHO4 genes on utilization of proline in Saccharomyces cerevisiae yeasts,” Genetika, vol. 36, no. 12, pp. 1622–1628, 2000. View at Google Scholar
  76. H. Friesen, K. Murphy, A. Breitkreutz, M. Tyers, and B. Andrews, “Regulation of the yeast amphiphysin homologue Rvs167p by phosphorylation,” Molecular Biology of the Cell, vol. 14, no. 7, pp. 3027–3040, 2003. View at Publisher · View at Google Scholar · View at PubMed
  77. D. Huang, G. Patrick, J. Moffat, L. H. Tsai, and B. Andrews, “Mammalian Cdk5 is a functional homologue of the budding yeast PHO85 cyclin-dependent protein kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 25, pp. 14445–14450, 1999. View at Publisher · View at Google Scholar
  78. B. K. Timblin and L. W. Bergman, “Elevated expression of stress response genes resulting front deletion of the PHO85 gene,” Molecular Microbiology, vol. 26, no. 5, pp. 981–990, 1997. View at Google Scholar
  79. Y. Bourne, M. H. Watson, M. J. Hickey et al., “Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1,” Cell, vol. 84, no. 6, pp. 863–874, 1996. View at Publisher · View at Google Scholar
  80. S. K. Hanks and T. Hunter, “The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification,” FASEB Journal, vol. 9, no. 8, pp. 576–596, 1995. View at Google Scholar
  81. R. C. Santos, N. C. Waters, C. L. Creasy, and L. W. Bergman, “Structure-function relationships of the yeast cyclin-dependent kinase PHO85,” Molecular and Cellular Biology, vol. 15, no. 10, pp. 5482–5491, 1995. View at Google Scholar
  82. F. H. Espinoza, A. Farrell, J. L. Nourse, H. M. Chamberlin, O. Gileadi, and D. O. Morgan, “Cak1 is required for Kin28 phosphorylation and activation in vivo,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6365–6373, 1998. View at Google Scholar
  83. E. A. Nigg, “Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle,” BioEssays, vol. 17, no. 6, pp. 471–480, 1995. View at Google Scholar
  84. G. Andersen, D. Busso, A. Poterszman et al., “The structure of cyclin H: common mode of kinase activation and specific features,” EMBO Journal, vol. 16, no. 5, pp. 958–967, 1997. View at Publisher · View at Google Scholar · View at PubMed
  85. P. T. Spellman, G. Sherlock, M. Q. Zhang et al., “Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization,” Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273–3297, 1998. View at Google Scholar
  86. P. Lange and P. E. Hansche, “Mapping of a centromere-linked gene responsible for constitutive acid phosphatase synthesis in yeast,” Molecular and General Genetics, vol. 180, no. 3, pp. 605–607, 1980. View at Google Scholar
  87. M. G. Samsonova, M. V. Padkina, and N. G. Krasnopevtseva, “Genetic and biochemical research of acid phosphatases in yeast Saccharomyces cerevisiae. V. Genetic control of acid phosphatase II synthesis regulation,” Genetika, vol. 11, pp. 104–115, 1975. View at Google Scholar
  88. V. Gilliquet, M. Legrain, G. Berben, and F. Hilger, “Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins,” Gene, vol. 96, no. 2, pp. 181–188, 1990. View at Publisher · View at Google Scholar
  89. A. Toh-e and T. Shimauchi, “Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae,” Yeast, vol. 2, no. 2, pp. 129–139, 1986. View at Google Scholar
  90. L. F. Bisson and J. Thorner, “Mutations in the PHO80 gene confer permeability to 5-mononucleotides in Saccharomyces cerevisiae,” Genetics, vol. 102, no. 3, pp. 341–359, 1982. View at Google Scholar
  91. T. A. Nicolson, L. S. Weisman, G. S. Payne, and W. T. Wickner, “A truncated form of the PHO80 cyclin redirects the PHO85 kinase to disrupt vacuole inheritance in S. cerevisiae,” Journal of Cell Biology, vol. 130, no. 4, pp. 835–845, 1995. View at Publisher · View at Google Scholar
  92. T. Nicolson, B. Conradt, and W. Wickner, “A truncated form of the PHO80 cyclin of Saccharomyces cerevisiae induces expression of a small cytosolic factor which inhibits vacuole inheritance,” Journal of Bacteriology, vol. 178, no. 14, pp. 4047–4051, 1996. View at Google Scholar
  93. V. Gilliquet and G. Berben, “Positive and negative regulators of the Saccharomyces cerevisiae ‘PHO system’ participate in several cell functions,” FEMS Microbiology Letters, vol. 108, no. 3, pp. 333–339, 1993. View at Publisher · View at Google Scholar
  94. S. Bandyopadhyay, M. Mehta, D. Kuo et al., “Rewiring of genetic networks in response to DNA damage,” Science, vol. 330, no. 6009, pp. 1385–1389, 2010. View at Publisher · View at Google Scholar · View at PubMed
  95. X. C. Mao, Y. L. Xia, Y. F. Hu, and C. D. Lu, “Involvement of PHO80 and PHO85 genes in Saccharomyces cerevisiae ion tolerance,” Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), vol. 35, no. 1, pp. 86–91, 2003. View at Google Scholar
  96. E. M. O'Neill, A. Kaffman, E. R. Jolly, and E. K. O'Shea, “Regulation of PHO4 nuclear localization by the PHO80-PH085 cyclin-CDK complex,” Science, vol. 271, no. 5246, pp. 209–212, 1996. View at Google Scholar
  97. P. S. Jayaraman, K. Hirst, and C. R. Goding, “The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation,” EMBO Journal, vol. 13, no. 9, pp. 2192–2199, 1994. View at Google Scholar
  98. S. L. Madden, D. L. Johnson, and L. W. Bergman, “Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 10, no. 11, pp. 5950–5957, 1990. View at Google Scholar
  99. Z. Wang, W. A. Wilson, M. A. Fujino, and P. J. Roach, “The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase PHO85 p,” FEBS Letters, vol. 506, no. 3, pp. 277–280, 2001. View at Publisher · View at Google Scholar
  100. M. Lee, S. O'Regan, J. L. Moreau, A. L. Johnson, L. H. Johnston, and C. R. Goding, “Regulation of the PcI7-PHO85 cyclin-cdk complex by Pho81,” Molecular Microbiology, vol. 38, no. 2, pp. 411–422, 2000. View at Publisher · View at Google Scholar
  101. Y. S. H. Tan, P. A. Morcos, and J. F. Cannon, “PHO85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 147–153, 2003. View at Publisher · View at Google Scholar · View at PubMed
  102. Y. Ho, A. Gruhler, A. Heilbut et al., “Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry,” Nature, vol. 415, no. 6868, pp. 180–183, 2002. View at Publisher · View at Google Scholar · View at PubMed
  103. D. Huang, J. Moffat, W. A. Wilson et al., “Cyclin partners determine PHO85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3289–3299, 1998. View at Google Scholar
  104. J. Lee, K. Colwill, V. Aneliunas et al., “Interaction of yeast Rvs167 and PHO85 cyclin-dependent kinase complexes may link the cell cycle to the actin cytoskeleton,” Current Biology, vol. 8, no. 24, pp. 1310–1321, 1998. View at Google Scholar
  105. C. N. Tennyson, J. Lee, and B. J. Andrews, “A role for the Pcl9-PHO85 cyclin-cdk complex at the M/G boundary in Saccharomyces cerevisiae,” Molecular Microbiology, vol. 28, no. 1, pp. 69–79, 1998. View at Publisher · View at Google Scholar
  106. A. S. Carroll and E. K. O'Shea, “PHO85 and signaling environmental conditions,” Trends in Biochemical Sciences, vol. 27, no. 2, pp. 87–93, 2002. View at Publisher · View at Google Scholar
  107. R. Wysocki, A. Javaheri, K. Kristjansdottir, F. Sha, and S. J. Kron, “CDK PHO85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage,” Nature Structural and Molecular Biology, vol. 13, no. 10, pp. 908–914, 2006. View at Publisher · View at Google Scholar · View at PubMed
  108. G. Schmid, J. B. Strosznajder, and J. Wesierska-Gadek, “Interplay between the p53 tumor suppressor protein family and Cdk5: novel therapeutic approaches for the treatment of neurodegenerative diseases using selective Cdk inhibitors,” Molecular Neurobiology, vol. 34, no. 1, pp. 27–50, 2006. View at Publisher · View at Google Scholar
  109. M. Kucej, B. Kucejova, R. Subramanian, X. J. Chen, and R. A. Butow, “Mitochondrial nucleoids undergo remodeling in response to metabolic cues,” Journal of Cell Science, vol. 121, no. 11, pp. 1861–1868, 2008. View at Publisher · View at Google Scholar · View at PubMed
  110. E. V. Sambuk, Y. G. Popova, and M. V. Padkina, “Genetic analysis of spontaneous suppressors of the PHO85 mutation in yeast Saccharomyces cerevisiae,” Genetika, vol. 39, no. 1, pp. 18–24, 2003. View at Google Scholar
  111. I. Miyakawa, M. Kanayama, Y. Fujita, and H. Sato, “Morphology and protein composition of the mitochondrial nucleoids in yeast cells lacking Abf2p, a high mobility group protein,” Journal of General and Applied Microbiology, vol. 56, no. 6, pp. 455–464, 2010. View at Publisher · View at Google Scholar
  112. R. Schricker, V. Magdolen, G. Strobel, E. Bogengruber, M. Breitenbach, and W. Bandlow, “Strain-dependent occurrence of functional GTP:AMP phosphotransferase (AK3) in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 270, no. 52, pp. 31103–31110, 1995. View at Publisher · View at Google Scholar · View at Scopus
  113. X. Zhao, E. G. D. Muller, and R. Rothstein, “A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools,” Molecular Cell, vol. 2, no. 3, pp. 329–340, 1998. View at Google Scholar · View at Scopus
  114. J. M. Bateman, M. Iacovino, P. S. Perlman, and R. A. Butow, “Mitochondrial DNA instability mutants of the bifunctional protein Ilv5p have altered organization in mitochondria and are targeted for degradation by Hsp78 and the Pim1p protease,” The Journal of Biological Chemistry, vol. 277, no. 49, pp. 47946–47953, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. T. Lithgow, T. Junne, C. Wachter, and G. Schatz, “Yeast mitochondria lacking the two import receptors Mas20p and Mas70p can efficiently and specifically import precursor proteins,” The Journal of Biological Chemistry, vol. 269, no. 21, pp. 15325–15330, 1994. View at Google Scholar · View at Scopus
  116. H. F. Steger, T. Söllner, M. Kiebler et al., “Import of ADP/ATP carrier into mitochondria: two receptors act in parallel,” Journal of Cell Biology, vol. 111, no. 6, pp. 2353–2363, 1990. View at Publisher · View at Google Scholar · View at Scopus
  117. K. S. Dimmer, S. Fritz, F. Fuchs et al., “Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 13, no. 3, pp. 847–853, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. V. Contamine and M. Picard, “Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast,” Microbiology and Molecular Biology Reviews, vol. 64, no. 2, pp. 281–315, 2000. View at Google Scholar · View at Scopus
  119. E. V. Sambuk, A. I. Fizikova, K. V. Zakharova, A. M. Smirnov, and M. V. Padkina, “The lack of cyclin-dependent phosphoprotein kinase PHO85 p leads to defects in mitochondrial nucleoid transmission in yeast Saccharomyces cerevisiae,” Tsitologiia, vol. 47, no. 10, pp. 917–924, 2005. View at Google Scholar · View at Scopus
  120. A. Iu. Fizikova, M. V. Padkina, and E. V. Sambuk, “The absence of cyclin-dependent protein kinase PHO85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae,” Genetika, vol. 45, no. 6, pp. 745–752, 2009. View at Google Scholar · View at Scopus
  121. A. M. Smirnov and E. V. Sambuk, “PHO-regulatory genes mutations influence on genetic material stability of yeast Saccharomyces cerevisia,” Ecological Genetics, vol. 6, pp. 40–47, 2008. View at Google Scholar
  122. B. A. Kaufman, J. E. Kolesar, P. S. Perlman, and R. A. Butow, “A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 163, no. 3, pp. 457–461, 2003. View at Publisher · View at Google Scholar · View at PubMed
  123. U. Fristedt, A. Berhe, K. Ensler, B. Norling, and B. L. Persson, “Isolation and characterization of membrane vesicles of Saccharomyces cerevisiae harboring the high-affinity phosphate transporter,” Archives of Biochemistry and Biophysics, vol. 330, no. 1, pp. 133–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  124. F. Giots, M. C. V. Donaton, and J. M. Thevelein, “Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae,” Molecular Microbiology, vol. 47, no. 4, pp. 1163–1181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Mort-Bontemps-Soret, C. Facca, and G. Faye, “Physical interaction of Cdc28 with Cdc37 in Saccharomyces cerevisiae,” Molecular Genetics and Genomics, vol. 267, no. 4, pp. 447–458, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. M. R. Gerber, A. Farrell, R. J. Deshaies, I. Herskowitz, and D. O. Morgan, “Cdc37 is required for association of the protein kinase Cdc28 with G and mitotic cyclins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4651–4655, 1995. View at Google Scholar · View at Scopus
  127. M. Peter and I. Herskowitz, “Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1,” Science, vol. 265, no. 5176, pp. 1228–1231, 1994. View at Google Scholar · View at Scopus
  128. M. D. Mendenhall, “An inhibitor of p34(CDC28) protein kinase activity from Saccharomyces cerevisiae,” Science, vol. 259, no. 5092, pp. 216–219, 1993. View at Google Scholar · View at Scopus
  129. T. Coche, D. Prozzi, M. Legrain, F. Hilger, and J. Vandenhaute, “Nucleotide sequence of the PHO81 gene involved in the regulation of the repressible acid phosphatase gene in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 18, no. 8, p. 2176, 1990. View at Google Scholar · View at Scopus
  130. C. L. Creasy, D. Shao, and L. W. Bergman, “Negative transcriptional regulation of PHO81 expression in Saccharomyces cerevisiae,” Gene, vol. 168, no. 1, pp. 23–29, 1996. View at Publisher · View at Google Scholar · View at Scopus
  131. K. R. Schneider, R. L. Smith, and E. K. O'Shea, “Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81,” Science, vol. 266, no. 5182, pp. 122–126, 1994. View at Google Scholar · View at Scopus
  132. N. Ogawa, K. I. Noguchi, H. Sawai, Y. Yamashita, C. Yompakdee, and Y. Oshima, “Functional domains of Pho81p, an inhibitor of PHO85 p protein kinase, in the transduction pathway of P(i) signals in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 15, no. 2, pp. 997–1004, 1995. View at Google Scholar · View at Scopus
  133. J. S. Flick and J. Thorner, “An essential function of a phosphoinositide-specific phospholipase C is relieved by inhibition of a cyclin-dependent protein kinase in the yeast Saccharomyces cerevisiae,” Genetics, vol. 148, no. 1, pp. 33–47, 1998. View at Google Scholar · View at Scopus
  134. X. Shen, H. Xiao, R. Ranallo, W. H. Wu, and C. Wu, “Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates,” Science, vol. 299, no. 5603, pp. 112–114, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. I. S.-Y. Sze, S. C. McFarlan, A. Spormann, H. P. C. Hogenkamp, and H. Follman, “A possible new class of ribonucleotide reductase from Methanobacterium thermoautotrophicum,” Biochemical and Biophysical Research Communications, vol. 184, no. 2, pp. 1101–1107, 1992. View at Publisher · View at Google Scholar
  136. K. Rébora, C. Desmoucelles, F. Borne, B. Pinson, and B. Daignan-Fornier, “Yeast AMP pathway genes respond to adenine through regulated synthesis of a metabolic intermediate,” Molecular and Cellular Biology, vol. 21, no. 23, pp. 7901–7912, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. M. L. Guetsova, K. Lecoq, and B. Daignan-Fornier, “The isolation and characterization of Saccharomyces cerevisiae mutants that constitutively express purine biosynthetic genes,” Genetics, vol. 147, no. 2, pp. 383–397, 1997. View at Google Scholar · View at Scopus
  138. S. Huang and E. K. O'Shea, “A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation,” Genetics, vol. 169, no. 4, pp. 1859–1871, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. S. Gauthier, F. Coulpier, L. Jourdren et al., “Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations,” Molecular Microbiology, vol. 68, no. 6, pp. 1583–1594, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. H. Wurst, T. Shiba, and A. Kornberg, “The gene for a major exopolyphosphatase of Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 177, no. 4, pp. 898–906, 1995. View at Google Scholar · View at Scopus
  141. A. L. Andreeva, O. A. Andreev, and J. Borejdo, “Structure of the 265-kilodalton complex formed upon EDC cross-linking of subfragment 1 to F-actin,” Biochemistry, vol. 32, no. 50, pp. 13956–13960, 1993. View at Publisher · View at Google Scholar
  142. K. D. Kumble and A. Kornberg, “Endopolyphosphatases for long chain inorganic polyphosphate in yeast and mammals,” The Journal of Biological Chemistry, vol. 271, no. 43, pp. 27146–27151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  143. T. V. Kulakovskaya, L. P. Lichko, V. M. Vagabov, and I. S. Kulaev, “Inorganic polyphosphates in mitochondria,” Biochemistry, vol. 75, no. 7, pp. 825–831, 2010. View at Publisher · View at Google Scholar
  144. A. Cohen, N. Perzov, H. Nelson, and N. Nelson, “A novel family of yeast chaperons involved in the distribution of V- ATPase and other membrane proteins,” The Journal of Biological Chemistry, vol. 274, no. 38, pp. 26885–26893, 1999. View at Publisher · View at Google Scholar
  145. O. Müller, M. J. Bayer, C. Peters, J. S. Andersen, M. Mann, and A. Mayer, “The Vtc proteins in vacuole fusion: coupling NSF activity to V trans-complex formation,” EMBO Journal, vol. 21, no. 3, pp. 259–269, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. K. Makino, H. Shinagawa, and A. Nakata, “Regulation of the phosphate regulon of Escherichia coli K-12: regulation and role of the regulatory gene phoR,” Journal of Molecular Biology, vol. 184, no. 2, pp. 231–240, 1985. View at Google Scholar
  147. M. Bennett, S. M. N. Onnebo, C. Azevedo, and A. Saiardi, “Inositol pyrophosphates: metabolism and signaling,” Cellular and Molecular Life Sciences, vol. 63, no. 5, pp. 552–564, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. A. Saiardi, R. Bhandari, A. C. Resnick, A. M. Snowman, and S. H. Snyder, “Phosphorylation of proteins by inositol pyrophosphates,” Science, vol. 306, no. 5704, pp. 2101–2105, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. L. Stephens, T. Radenberg, U. Thiel et al., “The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s),” The Journal of Biological Chemistry, vol. 268, no. 6, pp. 4009–4015, 1993. View at Google Scholar · View at Scopus
  150. R. Bhandari, A. Saiardi, Y. Ahmadibeni et al., “Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15305–15310, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. A. Saiardi, H. Erdjument-Bromage, A. M. Snowman, P. Tempst, and S. H. Snyder, “Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases,” Current Biology, vol. 9, no. 22, pp. 1323–1326, 1999. View at Google Scholar · View at Scopus
  152. S. Mulugu, W. Bai, P. C. Fridy et al., “A conserved family of enzymes that phosphorylate inositol hexakisphosphate,” Science, vol. 316, no. 5821, pp. 106–109, 2007. View at Publisher · View at Google Scholar · View at PubMed
  153. Y. S. Lee, S. Mulugu, J. D. York, and E. K. O'Shea, “Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates,” Science, vol. 316, no. 5821, pp. 109–112, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  154. J. Camblong, N. Iglesias, C. Fickentscher, G. Dieppois, and F. Stutz, “Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae,” Cell, vol. 131, no. 4, pp. 706–717, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. C. F. Hongay, P. L. Grisafi, T. Galitski, and G. R. Fink, “Antisense Transcription Controls Cell Fate in Saccharomyces cerevisiae,” Cell, vol. 127, no. 4, pp. 735–745, 2006. View at Publisher · View at Google Scholar · View at PubMed
  156. J. A. Martens, L. Laprade, and F. Winston, “Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene,” Nature, vol. 429, no. 6991, pp. 571–574, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  157. M. Nishizawa, T. Komai, Y. Katou, K. Shirahige, T. Ito, and A. Toh-e, “Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast,” PLoS Biology, vol. 6, no. 12, article e326, pp. 2817–2830, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  158. J. P. Uhler, C. Hertel, and J. Q. Svejstrup, “A role for noncoding transcription in activation of the yeast PHO5 gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8011–8016, 2007. View at Publisher · View at Google Scholar · View at PubMed