Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 368525, 12 pages
http://dx.doi.org/10.4061/2011/368525
Research Article

Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

1Unité Enzymes et Bioconversion, Ecole Nationale d’Ingénieurs de Sfax, route de Soukra 3038 Sfax, Tunisia
2Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieurs de Sfax, route de Soukra 3038 Sfax, Tunisia
3Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

Received 3 February 2011; Revised 25 March 2011; Accepted 30 March 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 Mohamed Neifar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Riva, “Laccases: blue enzymes for green chemistry,” Trends in Biotechnology, vol. 24, no. 5, pp. 219–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Rodríguez Couto and J. L. Toca Herrera, “Industrial and biotechnological applications of laccases: a review,” Biotechnology Advances, vol. 24, no. 5, pp. 500–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Rodríguez Couto and MA. A. Sanromán, “Application of solid-state fermentation to ligninolytic enzyme production,” Biochemical Engineering Journal, vol. 22, no. 3, pp. 211–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Hölker, M. Höfer, and J. Lenz, “Biotechnological advantages of laboratory-scale solid-state fermentation with fungi,” Applied Microbiology and Biotechnology, vol. 64, no. 2, pp. 175–186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Gómez, M. Pazos, S. R. Couto, and M. A. Sanromán, “Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions,” Journal of Food Engineering, vol. 68, no. 3, pp. 315–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. R. Couto and M. A. Sanromán, “Coconut flesh: a novel raw material for laccase production by Trametes hirsuta under solid-state conditions.: application to Lissamine Green B decolourization,” Journal of Food Engineering, vol. 71, no. 2, pp. 208–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Osma, J. L. Toca Herrera, and S. Rodríguez Couto, “Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration,” Dyes and Pigments, vol. 75, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Rosales, S. Rodríguez Couto, and MA. A. Sanromán, “Increased laccase production by Trametes hirsuta grown on ground orange peelings,” Enzyme and Microbial Technology, vol. 40, no. 5, pp. 1286–1290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Neifar, A. Jaouani, R. Ellouze-Ghorbel, S. Ellouze-Chaabouni, and M. J. Penninckx, “Effect of culturing processes and copper addition on laccase production by the white-rot fungus Fomes fomentarius MUCL 35117,” Letters in Applied Microbiology, vol. 49, no. 1, pp. 73–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Dinis, R. M. F. Bezerra, F. Nunes et al., “Modification of wheat straw lignin by solid state fermentation with white-rot fungi,” Bioresource Technology, vol. 100, no. 20, pp. 4829–4835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Hu and Z. Duvnjak, “The production of a laccase and the decrease of the phenolic content in canola meal during the growth of the fungus Pleurotus ostreatus in solid state fermentation processes,” Engineering in Life Sciences, vol. 4, no. 1, pp. 50–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Stajić, L. Persky, D. Friesem et al., “Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species,” Enzyme and Microbial Technology, vol. 38, no. 1-2, pp. 65–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Mishra and S. Kumar, “Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation,” Process Biochemistry, vol. 42, no. 4, pp. 681–685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Gnanamani, M. Jayaprakashvel, M. Arulmani, and S. Sadulla, “Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes,” Enzyme and Microbial Technology, vol. 38, no. 7, pp. 1017–1021, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. K. Beg, V. Sahai, and R. Gupta, “Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor,” Process Biochemistry, vol. 39, no. 2, pp. 203–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Mathieu and R. Phan-Tan-Luu, “Approche méthodologique des surfaces de réponse,” in Plans d’expériences: Application à l’entreprise, pp. 211–278, Technip, Paris, France, 1997. View at Google Scholar
  17. R. Phan-tan-luu and R. Cela, “Experimental design: introduction,” in Comprehensive Chemometrics, chapter 1.09, Elsevier, New York, NY, USA, 2009. View at Google Scholar
  18. R. Baati, A. Kamoun, M. Chaabouni, M. Sergent, and R. Phan-Tan-Luu, “Screening and optimization of the factors of a detergent admixture preparation,” Chemometrics and Intelligent Laboratory Systems, vol. 80, no. 2, pp. 198–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Cela, M. Claeys-Bruno, and R. Phan-Tan-Luu, “Screening strategies,” in Comprehensive Chemometrics, Chapter 1.10, Elsevier, New York, NY, USA, 2009. View at Google Scholar
  20. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters, Wiley, New York, NY, USA, 1978.
  21. R. Carlson, Design and Optimization in Organic Synthesis, Elsevier, Amsterdam, The Netherlands, 1992.
  22. R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York, NY, USA, 1995.
  23. J. Goupy, Plans d’Expériences Pour Surfaces de Response, Dunod, Paris, France, 1999.
  24. G. A. Lewis, D. Mathieu, and R. Phan-Tan-Luu, Pharmaceutical Experimental Design, Marcel Dekker, New York, NY, USA, 1999.
  25. L. A. Sarabia and M. C. Ortiz, “Response surface methodology,” in Comprehensive Chemometrics, chapter 1.12, Elsevier, New York, NY, USA, 2009. View at Google Scholar
  26. A. Vohra and T. Satyanarayana, “Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala,” Process Biochemistry, vol. 37, no. 9, pp. 999–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Elibol, “Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology,” Process Biochemistry, vol. 39, no. 9, pp. 1057–1062, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Francis, A. Sabu, K. M. Nampoothiri et al., “Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae,” Biochemical Engineering Journal, vol. 15, no. 2, pp. 107–115, 2003. View at Google Scholar · View at Scopus
  29. S. R. Senthilkumar, B. Ashokkumar, K. Chandra Raj, and P. Gunasekaran, “Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design,” Bioresource Technology, vol. 96, no. 12, pp. 1380–1386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mazutti, J. P. Bender, H. Treichel, and M. D. Luccio, “Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate,” Enzyme and Microbial Technology, vol. 39, no. 1, pp. 56–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Latifian, Z. Hamidi-Esfahani, and M. Barzegar, “Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions,” Bioresource Technology, vol. 98, no. 18, pp. 3634–3637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Levin, C. Herrmann, and V. L. Papinutti, “Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology,” Biochemical Engineering Journal, vol. 39, no. 1, pp. 207–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Maes and J. A. Delcour, “Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides,” Journal of Cereal Science, vol. 34, no. 1, pp. 29–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Beaugrand, D. Reis, F. Guillon, P. Debeire, and B. Chabbert, “Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls,” International Journal of Plant Sciences, vol. 165, no. 4, pp. 553–563, 2004. View at Google Scholar · View at Scopus
  35. A. Jaouani, F. Guillén, M. J. Penninckx, A. T. Martínez, and M. J. Martínez, “Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater,” Enzyme and Microbial Technology, vol. 36, no. 4, pp. 478–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. T. Hoke, “Economical second-order designs based on irregular fractions of the 3n factorial,” Technometrics, vol. 16, no. 3, pp. 375–384, 1974. View at Google Scholar · View at Scopus
  37. I. Aissa, M. Bouaziz, H. Ghamgui et al., “Optimization of lipase-catalyzed synthesis of acetylated tyrosol by response surface methodology,” Journal of Agricultural and Food Chemistry, vol. 55, no. 25, pp. 10298–10305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Mathieu, J. Nony, and R. Phan-Tan-Luu, NEMROD-W Software, LPRAI, Marseille, France, 2000.
  39. F. Zadrazil and H. Brunnert, “Investigation of physical parameters important for the solid state fermentation of straw by white rot fungi,” European Journal of Applied Microbiology and Biotechnology, vol. 11, no. 3, pp. 183–188, 1981. View at Google Scholar · View at Scopus
  40. A. Pandey, “Solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 81–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Pandey, “Recent process developments in solid-state fermentation,” Process Biochemistry, vol. 27, no. 2, pp. 109–117, 1992. View at Google Scholar · View at Scopus
  42. A. Sabu, A. Pandey, M. Jaafar Daud, and G. Szakacs, “Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620,” Bioresource Technology, vol. 96, no. 11, pp. 1223–1228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. G. R. J. Sutherland and S. D. Aust, “The effects of calcium on the thermal stability and activity of manganese peroxidase,” Archives of Biochemistry and Biophysics, vol. 332, no. 1, pp. 128–134, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Bennamoun, Z. Meraihi, and S. Dakhmouche, “Utilisation de la planification expérimentale pour l'optimisation de la production de l'α-amylase par Aspergillus oryzaeAhlburg (Cohen) 1042.72 cultivé sur milieu à base de déchets d'oranges,” Journal of Food Engineering, vol. 64, no. 2, pp. 257–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Pandey, C. R. Soccol, and D. Mitchell, “New developments in solid state fermentation: I-bioprocesses and products,” Process Biochemistry, vol. 35, no. 10, pp. 1153–1169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Galhaup, H. Wagner, B. Hinterstoisser, and D. Haltrich, “Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens,” Enzyme and Microbial Technology, vol. 30, no. 4, pp. 529–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Schlosser, R. Grey, and W. Fritsche, “Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood,” Applied Microbiology and Biotechnology, vol. 47, no. 4, pp. 412–418, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. K. K. Prasad, S. V. Mohan, R. S. Rao, B. R. Pati, and P. N. Sarma, “Laccase production by Pleurotus ostreatus 1804: optimization of submerged culture conditions by Taguchi DOE methodology,” Biochemical Engineering Journal, vol. 24, no. 1, pp. 17–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. P. J. Collins and A. D. W. Dobson, “Regulation of laccase gene transcription in Trametes versicolor,” Applied and Environmental Microbiology, vol. 63, no. 9, pp. 3444–3450, 1997. View at Google Scholar · View at Scopus
  50. G. Palmieri, P. Giardina, C. Bianco, B. Fontanella, and G. Sannia, “Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 66, no. 3, pp. 920–924, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. D. M. Soden and A. D. W. Dobson, “Differential regulation of laccase gene expression in Pleurotus sajor-caju,” Microbiology, vol. 147, no. 7, pp. 1755–1763, 2001. View at Google Scholar · View at Scopus
  52. V. Faraco, P. Giardina, and G. Sannia, “Metal-responsive elements in Pleurotus ostreatus laccase gene promoters,” Microbiology, vol. 149, no. 8, pp. 2155–2162, 2003. View at Google Scholar · View at Scopus
  53. P. Kashyap, A. Sabu, A. Pandey, G. Szakacs, and C. R. Soccol, “Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation,” Process Biochemistry, vol. 38, no. 3, pp. 307–312, 2002. View at Publisher · View at Google Scholar
  54. S. Ramachandran, A. K. Patel, K. M. Nampoothiri et al., “Coconut oil cake—a potential raw material for the production of α-amylase,” Bioresource Technology, vol. 93, no. 2, pp. 169–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Sabu, A. Pandey, M. Jaafar Daud, and G. Szakacs, “Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620,” Bioresource Technology, vol. 96, no. 11, pp. 1223–1228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. O. Kareem, I. Akpan, and S. B. Oduntan, “Cowpea waste: a novel substrate for solid state production of amylase by Aspergillus oryzae,” African Journal of Microbiology Research, vol. 3, no. 12, pp. 974–977, 2009. View at Google Scholar · View at Scopus
  57. A. Thiyagarajan, V. Kaviyarasan, and C. M. Karrunakaran, “Optimization of process parameters for the production of thermostable laccase by Pleurotus flabellatus ATK-1 using response surface methodology,” International Journal of Current Research, vol. 7, pp. 058–061, 2010. View at Google Scholar
  58. D. S. Arora and P. K. Gill, “Laccase production by some white rot fungi under different nutritional conditions,” Bioresource Technology, vol. 73, no. 3, pp. 283–285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Galhaup and D. Haltrich, “Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper,” Applied Microbiology and Biotechnology, vol. 56, no. 1-2, pp. 225–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. S. R. Couto, E. Rosales, M. Gundín, and M. Á. Sanromán, “Exploitation of a waste from the brewing industry for laccase production by two Trametes species,” Journal of Food Engineering, vol. 64, no. 4, pp. 423–428, 2004. View at Publisher · View at Google Scholar · View at Scopus