Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 523780, 7 pages
http://dx.doi.org/10.4061/2011/523780
Research Article

Keratinase Production by Three Bacillus spp. Using Feather Meal and Whole Feather as Substrate in a Submerged Fermentation

1Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPPG), Bloco I, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
2Centro de Pesquisas Avicolas, Instituto Federal do Rio de Janeiro, Campus Pinheiral, Rua José Breves, N° 550, Centro, 27197-000 Pinheiral, RJ, Brazil
3Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro, Campus Rio de Janeiro, Rua Senador Furtado n° 121, 20270-021 Maracanã, RJ, Brazil

Received 12 April 2011; Accepted 27 May 2011

Academic Editor: Claudiu T. Supuran

Copyright © 2011 Ana Maria Mazotto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity.