Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 796407, 6 pages
http://dx.doi.org/10.4061/2011/796407
Research Article

Production of Cold-Active Bacterial Lipases through Semisolid State Fermentation Using Oil Cakes

1Department of Microbiology and Microbial Technology, College of Biotechnology and Allied Sciences, Allahabad Agricultural Institute-Deemed University, Uttar Pradesh, Allahabad-211007, India
2College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
3Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
4Department of Biological Sciences, School of Basic Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Uttar Pradesh, Allahabad 211 007, India

Received 19 December 2010; Revised 20 February 2011; Accepted 23 February 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 Babu Joseph et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Singh and R. R. Yadav, “Tree-ring indications of recent glacier fluctuations in Gangotri, western Himalaya, India,” Current Science, vol. 79, no. 11, pp. 1598–1601, 2000. View at Google Scholar
  2. G. Feller, E. Narinx, J. L. Arpigny et al., “Enzymes from psychrophilic organisms,” FEMS Microbiology Reviews, vol. 18, no. 2-3, pp. 189–202, 1996. View at Google Scholar · View at Scopus
  3. C. J. Marshall, “Cold-adapted enzymes,” Trends in Biotechnology, vol. 15, no. 9, pp. 359–364, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Gerday, M. Aittaleb, M. Bentahir et al., “Cold-adapted enzymes: from fundamentals to biotechnology,” Trends in Biotechnology, vol. 18, no. 3, pp. 103–107, 2000. View at Publisher · View at Google Scholar
  5. B. Joseph, P. W. Ramteke, G. Thomas, and N. Shrivastava, “Review Cold-active Lipases: a versatile tool for industrial applications,” Biotechnology and Molecular Biology Reviews, vol. 2, pp. 39–48, 2007. View at Google Scholar
  6. A. Kademi, L. Danielle, and H. Ajain, “Lipases,” in Enzyme Technology, pp. 297–318, Asiatech, New Delhi, India, 2005. View at Google Scholar
  7. B. Joseph, P. W. Ramteke, and P. A. Kumar, “Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis,” Journal of General and Applied Microbiology, vol. 52, no. 6, pp. 315–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Domínguez, M. Costas, M. A. Longo, and A. Sanromán, “A novel application of solid state culture: production of lipases by Yarrowia lipolytica,” Biotechnology Letters, vol. 25, no. 15, pp. 1225–1229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. K. E. Aidoo, R. Hendry, and B. J. B. Wood, “Solid substrate fermentations,” Advances in Applied Microbiology, vol. 28, no. C, pp. 201–237, 1982. View at Publisher · View at Google Scholar
  10. A. Pandey, “Recent process developments in solid-state fermentation,” Process Biochemistry, vol. 27, no. 2, pp. 109–117, 1992. View at Google Scholar · View at Scopus
  11. N. Perez-Guerra, A. Torrado-Agrasar, C. Lopez-Macias, and L. Pastrana, “Main characteristics and applications of solid substrate fermentation,” Electronic Journal of Environmental, Agricultural and Food Chemistry, vol. 2, pp. 1–6, 2003. View at Google Scholar
  12. S. Benjamin and A. Pandey, “Coconut cake—a potent substrate for the production of lipase by Candida rugosa in solid-state fermentation,” Acta Biotechnologica, vol. 17, no. 3, pp. 241–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Benjamin and A. Pandey, “Optimization of liquid media for lipase production by Candida rugosa,” Bioresource Technology, vol. 55, no. 2, pp. 167–170, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Farrell, T. J. Foster, and K. T. Holland, “Molecular analysis and expression of the lipase of Staphylococcus epidermidis,” Journal of General Microbiology, vol. 139, no. 2, pp. 267–277, 1993. View at Google Scholar · View at Scopus
  15. J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams, Bergey’s Manual of Determinative Bacteriology, Williams & Wilkins, Baltimore, Md, USA, 9th edition, 1994.
  16. U. K. Winkler and M. Stuckmann, “Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens,” Journal of Bacteriology, vol. 138, no. 3, pp. 663–670, 1979. View at Google Scholar · View at Scopus
  17. H. K. Lee, M. J. Ahn, S. H. Kwak, W. H. Song, and B. C. Jeong, “Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB 4,” Journal of Microbiology, vol. 41, no. 1, pp. 22–27, 2003. View at Google Scholar · View at Scopus
  18. L. Kulakova, A. Galkin, T. Nakayama, T. Nishino, and N. Esaki, “Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stability,” Biochimica et Biophysica Acta, vol. 1696, no. 1, pp. 59–65, 2004. View at Publisher · View at Google Scholar
  19. X. Zeng, X. Xiao, P. Wang, and F. Wang, “Screening and characterization of psychrotrophic, lipolytic bacteria from deep-sea sediments,” Journal of Microbiology and Biotechnology, vol. 14, no. 5, pp. 952–958, 2004. View at Google Scholar · View at Scopus
  20. C. W. Hesseltine, “Solid state fermentation—an overview,” International Biodeterioration, vol. 23, no. 2, pp. 79–89, 1987. View at Google Scholar · View at Scopus
  21. N. Rashid, Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka, “Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A,” Applied and Environmental Microbiology, vol. 67, no. 9, pp. 4064–4069, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. D. W. Choo, T. Kurihara, T. Suzuki, K. Soda, and N. Esaki, “A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization,” Applied and Environmental Microbiology, vol. 64, no. 2, pp. 486–491, 1998. View at Google Scholar · View at Scopus
  23. R. R. Eitenmiller, J. R. Vakil, and K. M. Shahani, “Enzymes of food industry,” Food Science, vol. 35, pp. 130–133, 1970. View at Google Scholar
  24. R. K. Saxena, A. Sheoran, B. Giri, and W. S. Davidson, “Purification strategies for microbial lipases,” Journal of Microbiological Methods, vol. 52, no. 1, pp. 1–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. B. Gopinath, A. Hilda, T. Lakshmi Priya, G. Annadurai, and P. Anbu, “Purification of lipase from Geotrichum candidum: conditions optimized for enzyme production using Box-Behnken design,” World Journal of Microbiology and Biotechnology, vol. 19, no. 7, pp. 681–689, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Benjamin and A. Pandey, “Mixed-solid substrate fermentation. A novel process for enhanced lipase production by Candida rugosa,” Acta Biotechnologica, vol. 18, no. 4, pp. 315–324, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. H. S. Pau and I. C. Omar, “Selection and optimization of lipase production from Aspergillus flavus USM A10 via solid state fermentation on rice husks and wood dusts as substrates,” Pakistan Journal of Biological Sciences, vol. 7, pp. 1249–1256, 2004. View at Google Scholar
  28. C. Gerday, M. Aittaleb, J. L. Arpigny et al., “Psychrophilic enzymes: a thermodynamic challenge,” Biochimica et Biophysica Acta, vol. 1342, no. 2, pp. 119–131, 1997. View at Publisher · View at Google Scholar · View at Scopus