Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011 (2011), Article ID 823619, 20 pages
Review Article

Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

1Food Research Department, School of Chemistry, Autonomous University of Coahuila, Boulevard V. Carranza and González Lobo s/n, 25280 Saltillo, Coahuila, Mexico
2Research and Development Center, Coyotefoods Biopolymer and Biotechnology Co., Simón Bolívar 851-A, 25280 Saltillo, Coahuila, Mexico

Received 28 April 2011; Accepted 9 July 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 Luis V. Rodríguez-Durán et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme.