Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 851272, 8 pages
http://dx.doi.org/10.4061/2011/851272
Research Article

Cross-Linked Enzyme Aggregates of Naringinase: Novel Biocatalysts for Naringin Hydrolysis

Research Institute for Medicines and Pharmaceutical Sciences (i-Med-UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal

Received 15 May 2011; Accepted 4 July 2011

Academic Editor: J. Guisan

Copyright © 2011 Maria H. L. Ribeiro and Marco Rabaça. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Sheldon, “Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts,” Biochemical Society Transactions, vol. 35, no. 6, pp. 1583–1587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Sangeetha and T. E. Abraham, “Preparation and characterization of cross-linked enzyme aggregates (CLEA) of Subtilisin for controlled release applications,” International Journal of Biological Macromolecules, vol. 43, no. 3, pp. 314–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Cao, L. M. Van Langen, F. Van Rantwijk, and R. A. Sheldon, “Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of β-lactam antibiotics,” Journal of Molecular Catalysis B, vol. 11, no. 4-6, pp. 665–670, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Wilson, A. Illanes, L. Soler, and M. J. Henríquez, “Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase,” Process Biochemistry, vol. 44, no. 3, pp. 322–326, 2009. View at Publisher · View at Google Scholar
  5. D. Brady and J. Jordaan, “Advances in enzyme immobilisation,” Biotechnology Letters, vol. 31, no. 11, pp. 1639–1650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Roberge, D. Amos, D. Pollard, and P. Devine, “Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance,” Journal of Molecular Catalysis B, vol. 56, no. 1, pp. 41–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. E. Fazary, S. Ismadji, and Y. H. Ju, “Biochemical studies on native and cross-linked aggregates of Aspergillus awamori feruloyl esterase,” International Journal of Biological Macromolecules, vol. 44, no. 3, pp. 240–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Gupta, K. Dutt, S. Misra, S. Raghuwanshi, and R. K. Saxena, “Characterization of cross-linked immobilized lipase from thermophilic mould Thermomyces lanuginosa using glutaraldehyde,” Bioresource Technology, vol. 100, no. 18, pp. 4074–4076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. Vila Real, A. J. Alfaia, A. R. T. Calado, and M. H. L. Ribeiro, “High pressure-temperature effects on enzymatic activity: naringin bioconversion,” Food Chemistry, vol. 102, no. 3, pp. 565–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Puri and U. C. Banerjee, “Production, purification, and characterization of the debittering enzyme naringinase,” Biotechnology Advances, vol. 18, no. 3, pp. 207–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. V. V. Zverlov, C. Hertel, K. Bronnenmeier, A. Hroch, J. Kellermann, and W. H. Schwarz, “The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase,” Molecular Microbiology, vol. 35, no. 1, pp. 173–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. I. A. Ribeiro, J. Rocha, B. Sepodes, H. Mota-Filipe, and M. H. Ribeiro, “Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds,” Journal of Molecular Catalysis B, vol. 52-53, no. 1-4, pp. 13–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Marques, H. J. Vila-Real, A. J. Alfaia, and M. H. L. Ribeiro, “Modelling of the high pressure-temperature effects on naringin hydrolysis based on response surface methodology,” Food Chemistry, vol. 105, no. 2, pp. 504–510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. I. Amaro, J. Rocha, H. Vila-Real et al., “Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice,” Food Research International, vol. 42, no. 8, pp. 1010–1017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. L. Ribeiro, C. Afonso, H. J. Vila-Real, A. J. Alfaia, and L. Ferreira, “Contribution of response surface methodology to the modeling of naringin hydrolysis by naringinase Ca-alginate beads under high pressure,” LWT-Food Science and Technology, vol. 43, no. 3, pp. 482–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. C. Chen, S. C. Shen, and H. Y. Lin, “Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids,” Biochemical Pharmacology, vol. 66, no. 7, pp. 1139–1150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Google Scholar · View at Scopus
  18. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  19. I. A. C. Ribeiro and M. H. L. Ribeiro, “Kinetic modelling of naringin hydrolysis using a bitter sweet alfa-rhamnopyranosidase immobilized in k-carrageenan,” Journal of Molecular Catalysis B, vol. 51, no. 1-2, pp. 10–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. A. L. Pedro, A. J. Alfaia, J. Marques, H. J. Vila-Real, A. Calado, and M. H. L. Ribeiro, “Design of an immobilized enzyme system for naringin hydrolysis at high-pressure,” Enzyme and Microbial Technology, vol. 40, no. 3, pp. 442–446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Henley and A. Sadana, “Categorization of enzyme deactivations using a series-type mechanism,” Enzyme and Microbial Technology, vol. 7, no. 2, pp. 50–60, 1985. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Giovanni, “Response surface methodology and product optimization,” Food Technology, vol. 37, pp. 41–45, 1983. View at Google Scholar