Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012, Article ID 192867, 8 pages
Research Article

Computational Prediction of Protein-Protein Interactions of Human Tyrosinase

1College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
2Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
3Department of Biology, College of Life Sciences, Soochow University, Suzhou 215123, China
4Department of Bioinformatics, University of Sciences and Technology, Daejeon 305-350, Republic of Korea

Received 5 January 2012; Accepted 23 January 2012

Academic Editor: Yong-Doo Park

Copyright © 2012 Su-Fang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms.