Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012, Article ID 192867, 8 pages
http://dx.doi.org/10.1155/2012/192867
Research Article

Computational Prediction of Protein-Protein Interactions of Human Tyrosinase

1College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
2Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
3Department of Biology, College of Life Sciences, Soochow University, Suzhou 215123, China
4Department of Bioinformatics, University of Sciences and Technology, Daejeon 305-350, Republic of Korea

Received 5 January 2012; Accepted 23 January 2012

Academic Editor: Yong-Doo Park

Copyright © 2012 Su-Fang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Yamaguchi and V. J. Hearing, “Physiological factors that regulate skin pigmentation,” BioFactors, vol. 35, no. 2, pp. 193–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. M. Plonka and M. Grabacka, “Melanin synthesis in microorganisms—biotechnological and medical aspects,” Acta Biochimica Polonica, vol. 53, no. 3, pp. 429–443, 2006. View at Google Scholar · View at Scopus
  3. M. Sugumaran, “Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects,” Pigment Cell Research, vol. 15, no. 1, pp. 2–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Scherer and R. Kumar, “Genetics of pigmentation in skin cancer—a review,” Mutation Research, vol. 705, no. 2, pp. 141–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Kirkwood, “Albinism and its implications with vision,” Insight, vol. 34, no. 2, pp. 13–16, 2009. View at Google Scholar · View at Scopus
  6. J. J. Nicolas, F. C. Richard-Forget, P. M. Goupy, M. J. Amiot, and S. Y. Aubert, “Enzymatic browning reactions in apple and apple products,” Critical reviews in food science and nutrition, vol. 34, no. 2, pp. 109–157, 1994. View at Google Scholar · View at Scopus
  7. H. Li, K. W. Cheng, C. H. Cho, Z. He, and M. Wang, “Oxyresveratrol as an antibrowning agent for cloudy apple juices and fresh-cut apples,” Journal of Agricultural and Food Chemistry, vol. 55, no. 7, pp. 2604–2610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Nappi, M. Poirié, and Y. Carton, “The role of melanization and cytotoxic by-products in the cellular immune responses of Drosophila against parasitic wasps,” Advances in Parasitology, vol. 70, pp. 99–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sugumaran, “Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects,” Pigment Cell Research, vol. 15, no. 1, pp. 2–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Olivares and F. Solano, “New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins,” Pigment Cell and Melanoma Research, vol. 22, no. 6, pp. 750–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Jimbow, J. S. Park, F. Kato et al., “Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis,” Pigment Cell Research, vol. 13, no. 4, pp. 222–229, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Muñoz-Muñoz, F. Garcia-Molina, R. Varon et al., “Suicide inactivation of the diphenolase and monophenolase activities of Tyrosinase,” IUBMB Life, vol. 62, no. 7, pp. 539–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. García-Borrón and F. Solano, “Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center,” Pigment Cell Research, vol. 15, no. 3, pp. 162–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. J. Kim and H. Uyama, “Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future,” Cellular and Molecular Life Sciences, vol. 62, no. 15, pp. 1707–1723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Parvez, M. Kang, H. S. Chung, and H. Bae, “Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries,” Phytotherapy Research, vol. 21, no. 9, pp. 805–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. W. T. Ismaya, H. J. Rozeboom, A. Weijn et al., “Crystal structure of agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone,” Biochemistry, vol. 50, no. 24, pp. 5477–5486, 2011. View at Publisher · View at Google Scholar
  17. M. Sendovski, M. Kanteev, V. S. Ben-Yosef, N. Adir, and A. Fishman, “First structures of an active bacterial tyrosinase reveal copper plasticity,” Journal of Molecular Biology, vol. 405, no. 1, pp. 227–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sendovski, M. Kanteev, V. Shuster Ben-Yosef, N. Adir, and A. Fishman, “Crystallization and preliminary X-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium,” Acta Crystallographica Section F, vol. 66, no. 9, pp. 1101–1103, 2010. View at Publisher · View at Google Scholar
  19. T. Kobayashi and V. J. Hearing, “Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo,” Journal of Cell Science, vol. 120, no. 24, pp. 4261–4268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Watabe, J. C. Valencia, E. Le Pape et al., “Involvement of dynein and spectrin with early melanosome transport and melanosomal protein trafficking,” Journal of Investigative Dermatology, vol. 128, no. 1, pp. 162–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. R. Lü, E. Seo, L. Yan et al., “High-throughput integrated analyses for the tyrosinase-induced melanogenesis: microarray, proteomics and interactomics studies,” Journal of Biomolecular Structure and Dynamics, vol. 28, no. 2, pp. 259–276, 2010. View at Google Scholar · View at Scopus
  22. I. H. Cho, Z. R. Lü, J. R. Yu et al., “Towards profiling the gene expression of tyrosinase-induced melanogenesis in HEK293 Cells: a functional DNA chip microarray and interactomics studies,” Journal of Biomolecular Structure and Dynamics, vol. 27, no. 3, pp. 331–345, 2009. View at Google Scholar · View at Scopus
  23. W. S. Oetting, “The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation,” Pigment Cell Research, vol. 13, no. 5, pp. 320–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Shibahara, “Mutations of the tyrosinase gene in oculocutaneous albinism.,” Pigment Cell Research, vol. 5, no. 5, pp. 279–283, 1992. View at Google Scholar · View at Scopus
  25. L. Bordoli, F. Kiefer, K. Arnold, P. Benkert, J. Battey, and T. Schwede, “Protein structure homology modeling using SWISS-MODEL workspace,” Nature Protocols, vol. 4, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Kiefer, K. Arnold, M. Künzli, L. Bordoli, and T. Schwede, “The SWISS-MODEL Repository and associated resources,” Nucleic Acids Research, vol. 37, no. 1, pp. D387–D392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. W. Ritchie and G. J. L. Kemp, “Protein docking using spherical polar Fourier correlations,” Proteins, vol. 39, no. 2, pp. 178–194, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. S. Hwang, H. Y. Lee, T.-Y. Lim, M. Y. Kim, and T.-J. Yoon, “Disruption of tyrosinase glycosylation by N-acetylglucosamine and its depigmenting effects in guinea pig skin and in human skin,” Journal of Dermatological Science, vol. 63, no. 3, pp. 199–201, 2011. View at Publisher · View at Google Scholar
  29. N. Branza-Nichita, G. Negroiu, A. J. Petrescu et al., “Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 8169–8175, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Újvári, R. Aron, T. Eisenhaure et al., “Translation rate of human tyrosinase determines its N-linked glycosylation level,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5924–5931, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. Y.-X. Si, Z.-J. Wang, D. Park et al., “Effect of hesperetin on tyrosinase: Inhibition kinetics integrated computational simulation study,” International Journal of Biological Macromolecules, vol. 50, no. 1, pp. 257–262, 2012. View at Publisher · View at Google Scholar
  32. S.-J. Yin, Y.-X. Si, Z.-J. Wang et al., “The effect of thiobarbituric acid on tyrosinase: inhibition kinetics and computational simulation,” Journal of Biomolecular Structure and Dynamics, vol. 29, no. 3, pp. 463–470, 2011. View at Google Scholar
  33. S.-J. Yin, Y.-X. Si, Y.-F. Chen et al., “Mixed-type inhibition of tyrosinase from agaricus bisporus by terephthalic acid: computational simulations and kinetics,” Protein Journal, vol. 30, no. 4, pp. 273–280, 2011. View at Publisher · View at Google Scholar
  34. Y.-X. Si, S.-J. Yin, D. Park et al., “Tyrosinase inhibition by isophthalic acid: kinetics and computational simulation,” International Journal of Biological Macromolecules, vol. 48, no. 4, pp. 700–704, 2011. View at Publisher · View at Google Scholar
  35. S. J. Yin, Y. X. Si, and G. Y. Qian, “Inhibitory effect of phthalic acid on tyrosinase: the mixed-type inhibition and docking simulations,” Enzyme Research, vol. 2011, Article ID 294724, 7 pages, 2011. View at Publisher · View at Google Scholar
  36. Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama, “Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis,” Journal of Biological Chemistry, vol. 281, no. 13, pp. 8981–8990, 2006. View at Publisher · View at Google Scholar · View at Scopus