Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012, Article ID 196853, 6 pages
http://dx.doi.org/10.1155/2012/196853
Research Article

A Thermostable Crude Endoglucanase Produced by Aspergillus fumigatus in a Novel Solid State Fermentation Process Using Isolated Free Water

Food and Biotechnology Research Centre, PCSIR Labs Complex, Ferozepur Road, Lahore 54600, Pakistan

Received 4 April 2012; Revised 12 May 2012; Accepted 17 May 2012

Academic Editor: Jose M. Guisan

Copyright © 2012 Abdul A. N. Saqib et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. K. Bhat, “Cellulases and related enzymes in biotechnology,” Biotechnology Advances, vol. 18, no. 5, pp. 355–383, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. D. B. Wilson, “Cellulases and Biofules,” Current Opinion in Biotechnology, vol. 20, pp. 1–5, 2009. View at Google Scholar
  3. C. J. Yeoman, Y. Han, D. Dodd, C. M. Schroeder, R. I. Mackie, and I. K. Cann, “Thermostable enzymes as biocatalysts in the biofuel industry.,” Advances in Applied Microbiology, vol. 70, pp. 1–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Karnchanatat, A. Petsom, P. Sangvanich et al., “A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm,” Enzyme and Microbial Technology, vol. 42, no. 5, pp. 404–413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Pandey, “Solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 81–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. N. Saqib, M. Hassan, N. F. Khan, and S. Baig, “Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF),” Process Biochemistry, vol. 45, no. 5, pp. 641–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. S. M. S. Raghavarao, T. V. Ranganathan, and N. G. Karanth, “Some engineering aspects of solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 127–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Bellon-Maurel, O. Orliac, and P. Christen, “Sensors and measurements in solid state fermentation: a review,” Process Biochemistry, vol. 38, no. 6, pp. 881–896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Hölker and J. Lenz, “Solid-state fermentation—are there any biotechnological advantages?” Current Opinion in Microbiology, vol. 8, no. 3, pp. 301–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Gervais and C. Bazelin, “Development of a solid-substrate fermentor allowing the control of the substrate water activity,” Biotechnology Letters, vol. 8, no. 3, pp. 191–196, 1986. View at Google Scholar · View at Scopus
  11. A. Durand, “Bioreactor designs for solid state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 113–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. H. Davis and F. J. De Serres, “Genetic and microbiological research techniques for Neurospora crassa,” in Methods in Enzymology, H. Tabor and C. W. Tabor, Eds., vol. 17A, pp. 79–143, Academic Press, New York, NY, USA, 1970. View at Google Scholar
  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent.,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  14. A. A. N. Saqib and P. John Whitney, “Role of fragmentation activity in cellulose hydrolysis,” International Biodeterioration and Biodegradation, vol. 58, no. 3-4, pp. 180–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Siddiqui, A. A. N. Saqib, M. H. Rashid, and M. I. Rajoka, “Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger,” Enzyme and Microbial Technology, vol. 27, no. 7, pp. 467–474, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Thongekkaew, H. Ikeda, K. Masaki, and H. Iefuji, “An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris,” Protein Expression and Purification, vol. 60, no. 2, pp. 140–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. P. De Vries and J. Visser, “Aspergillus enzymes involved in degradation of plant cell wall polysaccharides,” Microbiology and Molecular Biology Reviews, vol. 65, no. 4, pp. 497–522, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. H. N. Bhatti, M. H. Rashid, R. Nawaz, A. M. Khalid, M. Asgher, and A. Jabbar, “Effect of aniline coupling on kinetic and thermodynamic properties of Fusarium solani glucoamylase,” Applied Microbiology and Biotechnology, vol. 73, no. 6, pp. 1290–1298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Javed, M. H. Rashid, H. Nadeem, M. Riaz, and R. Perveen, “Catalytic and thermodynamic characterization of endoglucanase (CMCase) from Aspergillus oryzae cmc-1,” Applied Biochemistry and Biotechnology, vol. 157, no. 3, pp. 483–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. S. Farinas, M. M. Loyo, A. Baraldo, P. W. Tardioli, V. B. Neto, and S. Couri, “Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature,” New Biotechnology, vol. 27, no. 6, pp. 810–815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. S. Siddiqui, A. A. N. Saqib, M. H. Rashid, and M. I. Rajoka, “Thermostabilization of carboxymethylcellulase from Aspergillus niger by carboxyl group modification,” Biotechnology Letters, vol. 19, no. 4, pp. 325–329, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Ku, P. Lu, C. Chan et al., “Predicting melting temperature directly from protein sequences,” Computational Biology and Chemistry, vol. 33, no. 6, pp. 445–450, 2009. View at Publisher · View at Google Scholar · View at Scopus