Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012 (2012), Article ID 659649, 11 pages
Review Article

Phosphatases: The New Brakes for Cancer Development?

Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA

Received 22 July 2011; Revised 25 August 2011; Accepted 20 September 2011

Academic Editor: Assia Shisheva

Copyright © 2012 Qingxiu Zhang and Francois X. Claret. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The phosphatidylinositol 3-kinase (PI3K) pathway plays a pivotal role in the maintenance of processes such as cell growth, proliferation, survival, and metabolism in all cells and tissues. Dysregulation of the PI3K/Akt signaling pathway occurs in patients with many cancers and other disorders. This aberrant activation of PI3K/Akt pathway is primarily caused by loss of function of all negative controllers known as inositol polyphosphate phosphatases and phosphoprotein phosphatases. Recent studies provided evidence of distinct functions of the four main phosphatases—phosphatase and tensin homologue deleted on chromosome 10 (PTEN), Src homology 2-containing inositol 5′-phosphatase (SHIP), inositol polyphosphate 4-phosphatase type II (INPP4B), and protein phosphatase 2A (PP2A)—in different tissues with respect to regulation of cancer development. We will review the structures and functions of PTEN, SHIP, INPP4B, and PP2A phosphatases in suppressing cancer progression and their deregulation in cancer and highlight recent advances in our understanding of the PI3K/Akt signaling axis.