Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012 (2012), Article ID 731427, 10 pages
http://dx.doi.org/10.1155/2012/731427
Research Article

The Effect of D-(−)-arabinose on Tyrosinase: An Integrated Study Using Computational Simulation and Inhibition Kinetics

1Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
2Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
3Department of Bioinformatics, University of Sciences and Technology, Daejeon 305-350, Republic of Korea
4Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea

Received 16 October 2012; Revised 21 November 2012; Accepted 21 November 2012

Academic Editor: Ali-Akbar Saboury

Copyright © 2012 Hong-Jian Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Jimbow, J. S. Park, F. Kato et al., “Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis,” Pigment Cell Research, vol. 13, no. 4, pp. 222–229, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Olivares and F. Solano, “New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins,” Pigment Cell and Melanoma Research, vol. 22, no. 6, pp. 750–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. J. Kim and H. Uyama, “Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future,” Cellular and Molecular Life Sciences, vol. 62, no. 15, pp. 1707–1723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Rescigno, F. Sollai, B. Pisu, A. Rinaldi, and E. Sanjust, “Tyrosinase inhibition: general and applied aspects,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 17, no. 4, pp. 207–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. C. Lai, C. C. Chen, and R. F. Hou, “Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito Armigeres subalbatus (Diptera: Culicidae),” Journal of Medical Entomology, vol. 39, no. 2, pp. 266–274, 2002. View at Google Scholar · View at Scopus
  6. M. R. Kanost, H. Jiang, and X. Q. Yu, “Innate immune responses of a lepidopteran insect, Manduca sexta,” Immunological Reviews, vol. 198, pp. 97–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Guerrero and G. Rosell, “Biorational approaches for insect control by enzymatic inhibition,” Current Medicinal Chemistry, vol. 12, no. 4, pp. 461–469, 2005. View at Google Scholar · View at Scopus
  8. Y. Li, Y. Wang, H. Jiang, and J. Deng, “Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 17002–17006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Yoon, S. Fujii, and E. I. Solomon, “Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6585–6590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Decker and F. Tuczek, “Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism,” Trends in Biochemical Sciences, vol. 25, no. 8, pp. 392–397, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. F. García-Molina, J. L. Muñoz, R. Varón, J. N. Rodríguez-López, F. García-Cánovas, and J. Tudela, “A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase,” Journal of Agricultural and Food Chemistry, vol. 55, no. 24, pp. 9739–9749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. S. Chang, “An updated review of tyrosinase inhibitors,” International Journal of Molecular Sciences, vol. 10, no. 6, pp. 2440–2475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Cho, J. S. Roh, W. S. Sun, S. H. Kim, and K. D. Park, “N-Benzylbenzamides: a new class of potent tyrosinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 10, pp. 2682–2684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Zhang, Q. X. Chen, K. K. Song, and J. J. Xie, “Inhibitory effects of salicylic acid family compounds on the diphenolase activity of mushroom tyrosinase,” Food Chemistry, vol. 95, no. 4, pp. 579–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. W. J. Hu, L. Yan, D. Park et al., “Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose,” International Journal of Biological Macromolecules, vol. 50, no. 3, pp. 694–700, 2012. View at Publisher · View at Google Scholar
  16. S. J. Yin, Y. X. Si, Y. F. Chen et al., “Mixed-type inhibition of tyrosinase from agaricus bisporus by terephthalic acid: computational simulations and kinetics,” Protein Journal, vol. 30, no. 4, pp. 273–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. X. Si, Z. J. Wang, D. Park et al., “Effects of isorhamnetin on tyrosinase: inhibition kinetics and computational simulation,” Bioscience Biotechnology Biochemistry, vol. 76, no. 6, pp. 1091–1097, 2012. View at Google Scholar
  18. Y. X. Si, S. J. Yin, D. Park et al., “Tyrosinase inhibition by isophthalic acid: kinetics and computational simulation,” International Journal of Biological Macromolecules, vol. 48, no. 4, pp. 700–704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X. H. Huang, Q. X. Chen, Q. Wang et al., “Inhibition of the activity of mushroom tyrosinase by alkylbenzoic acids,” Food Chemistry, vol. 94, no. 1, pp. 1–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Adrio and A. L. Demain, “Genetic improvementof processes yielding microbial products,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 187–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Yan, S. J. Yin, D. Park et al., “Computational simulations integrating inhibition kinetics of tyrosinase by oxalic acid,” International Research of Pharmacy and Pharmacology, vol. 1, no. 6, pp. 126–135, 2011. View at Google Scholar
  22. L. Gou, Z. R. Lü, D. Park et al., “The effect of histidine residue modification on tyrosinase activity and conformation: inhibition kinetics and computational prediction,” Journal of Biomolecular Structure and Dynamics, vol. 26, no. 3, pp. 395–401, 2008. View at Google Scholar · View at Scopus
  23. Z. R. Lü, L. Shi, J. Wang et al., “The effect of trifluoroethanol on tyrosinase activity and conformation: inhibition kinetics and computational simulations,” Applied Biochemistry and Biotechnology, vol. 160, no. 7, pp. 1896–1908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. N. Tran, I. S. Lee, D. T. Ha, H. J. Kim, B. S. Min, and K. H. Bae, “Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia,” Journal of Natural Products, vol. 72, no. 6, pp. 1205–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Kang, Y. M. Kim, N. Kim, D. W. Kim, S. H. Nam, and D. Kim, “Synthesis and characterization of hydroquinone fructoside using Leuconostoc mesenteroides levansucrase,” Applied Microbiology and Biotechnology, vol. 83, no. 6, pp. 1009–1016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Marín-Zamora, F. Rojas-Melgarejo, F. García-Cánovas, and P. A. García-Ruiz, “Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates,” Journal of Biotechnology, vol. 131, no. 4, pp. 388–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Delogu, G. Podda, M. Corda, M. B. Fadda, A. Fais, and B. Era, “Synthesis and biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 20, pp. 6138–6140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Yi, R. Cao, W. Peng et al., “Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors,” European Journal of Medicinal Chemistry, vol. 45, no. 2, pp. 639–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. R. Kanade, V. L. Suhas, N. Chandra, and L. R. Gowda, “Functional interaction of diphenols with polyphenol oxidase: molecular determinants of substrate/inhibitor specificity,” FEBS Journal, vol. 274, no. 16, pp. 4177–4187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Kim, J. Park, J. Kim et al., “Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study,” Journal of Agricultural and Food Chemistry, vol. 54, no. 3, pp. 935–941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Shiino, Y. Watanabe, and K. Umezawa, “Synthesis and tyrosinase inhibitory activity of novel N-hydroxybenzyl-N-nitrosohydroxylamines,” Bioorganic Chemistry, vol. 31, no. 2, pp. 129–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Yan, R. Cao, W. Yi et al., “Synthesis and evaluation of 5-benzylidene(thio)barbiturate-β-D-glycosides as mushroom tyrosinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 15, pp. 4055–4058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Le Guilloux, P. Schmidtke, and P. Tuffery, “Fpocket: an open source platform for ligand pocket detection,” BMC Bioinformatics, vol. 10, article 168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Trott and A. J. Olson, “Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. B. R. Brooks, C. Brooks III, A. Mackerell Jr. et al., “CHARMM: the biomolecular simulation program,” Journal of Computational Chemistry, vol. 30, no. 10, pp. 1545–1614, 2009. View at Publisher · View at Google Scholar
  36. Y. X. Si, Z. J. Wang, D. Park et al., “Effect of hesperetin on tyrosinase: inhibition kinetics integrated computational simulation study,” International Journal of Biological Macromolecules, vol. 50, no. 1, pp. 257–262, 2012. View at Publisher · View at Google Scholar
  37. M. X. Xie, X. Y. Xu, and Y. D. Wang, “Interaction between hesperetin and human serum albumin revealed by spectroscopic methods,” Biochimica et Biophysica Acta, vol. 1724, no. 1-2, pp. 215–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Gąsowska, P. Kafarski, and H. Wojtasek, “Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols,” Biochimica et Biophysica Acta, vol. 1673, no. 3, pp. 170–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir, and J. Vaya, “Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety,” Bioorganic and Medicinal Chemistry, vol. 13, no. 2, pp. 433–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. L. Muñoz-Muñoz, F. Garcia-Molina, R. Varon et al., “Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase,” IUBMB Life, vol. 62, no. 7, pp. 539–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. J. C. Espín, R. Varón, L. G. Fenoll et al., “Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase,” European Journal of Biochemistry, vol. 267, no. 5, pp. 1270–1279, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Muñoz-Muñoz, F. Garcia-Molina, P. A. Garcia-Ruíz et al., “Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism,” Biochemical Journal, vol. 416, no. 3, pp. 431–440, 2008. View at Publisher · View at Google Scholar