Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2013 (2013), Article ID 670702, 6 pages
http://dx.doi.org/10.1155/2013/670702
Research Article

Purification and Characterization of Phenylalanine Ammonia Lyase from Trichosporon cutaneum

1Food, Nutrition, and Health, University of British Columbia, 2205 East Mall, Vancouver, BC, Canada V6T 1Z4
2Department of Chemistry, University of the West Indies, Kingston, Jamaica

Received 25 June 2013; Accepted 13 August 2013

Academic Editor: Qi-Zhuang Ye

Copyright © 2013 Andrea Goldson-Barnaby and Christine H. Scaman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Hanson and E. A. Havir, The Biochemistry of Plants, vol. 7, Academic Press, New York, NY, USA, 1981.
  2. J. S. Williams, M. Thomas, and D. J. Clarke, “The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01,” Microbiology, vol. 151, no. 8, pp. 2543–2550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K. T. Watts, B. N. Mijts, P. C. Lee, A. J. Manning, and C. Schmidt-Dannert, “Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family,” Chemistry and Biology, vol. 13, no. 12, pp. 1317–1326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Moffitt, G. V. Louie, M. E. Bowman, J. Pence, J. P. Noel, and B. S. Moore, “Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization,” Biochemistry, vol. 46, no. 4, pp. 1004–1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. W. W. Qi, T. Vannelli, S. Breinig et al., “Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene,” Metabolic Engineering, vol. 9, no. 3, pp. 268–276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Breinig, W. W. Qi, F. Sariaslani, T. Vannelli, and Z. Xue, “United States Patent US6951751,” 2005.
  7. D. H. Jones, “Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development,” Phytochemistry, vol. 23, no. 7, pp. 1349–1359, 1984. View at Google Scholar · View at Scopus
  8. M. J. MacDonald and G. B. D'Cunha, “A modern view of phenylalanine ammonia lyase,” Biochemistry and Cell Biology, vol. 85, no. 3, pp. 273–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Xue, M. McCluskey, K. Cantera, A. Ben-Bassat, F. S. Sariaslani, and L. Huang, “Improved production of p-hydroxycinnamic acid from tyrosine using a novel thermostable phenylalanine/tyrosine ammonia lyase enzyme,” Enzyme and Microbial Technology, vol. 42, no. 1, pp. 58–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  11. C. W. Abell and R. Shen, “Phenylalanine ammonia-lyase from the yeast rhodotorula glutinis,” Methods in Enzymology, vol. 142, no. C, pp. 242–248, 1987. View at Publisher · View at Google Scholar · View at Scopus
  12. R. I. Monge, M. Lara, and A. Lopez-Munguia, “Purification and stabilization of phenylalanine ammonia lyase from Sporidiobolus pararoseus,” Biotechnology Techniques, vol. 9, no. 6, pp. 423–428, 1995. View at Google Scholar · View at Scopus
  13. T. Vannelli, Z. Xue, S. Breinig, W. W. Qi, and F. S. Sariaslani, “Functional expression in Escherichia coli of the tyrosine-inducible tyrosine ammonia-lyase enzyme from yeast Trichosporon cutaneum for production of p-hydroxycinnamic acid,” Enzyme and Microbial Technology, vol. 41, no. 4, pp. 413–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ameyama, E. Shinagawa, K. Matsushita, and O. Adachi, “Growth stimulation of microorganisms by pyrroloquinoline quinone,” Agricultural and Biological Chemistry, vol. 48, no. 11, pp. 2909–2911, 1984. View at Google Scholar · View at Scopus
  15. A. A. Gatenby, F. S. Sariaslani, X. Tang, W. W. Qi, and T. Vannelli, “US Patent 6368837,” 2002.
  16. R. R. Fritz, D. S. Hodgins, and C. W. Abell, “Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals,” The Journal of Biological Chemistry, vol. 251, no. 15, pp. 4646–4650, 1976. View at Google Scholar · View at Scopus
  17. H. J. Gilbert and M. Tully, “Synthesis and degradation of phenylalanine ammonia-lyase of Rhodosporidium toruloides,” Journal of Bacteriology, vol. 150, no. 2, pp. 498–505, 1982. View at Google Scholar · View at Scopus