Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2013, Article ID 928913, 11 pages
http://dx.doi.org/10.1155/2013/928913
Research Article

Immobilization and Biochemical Properties of the Enantioselective Recombinant NStcI Esterase of Aspergillus nidulans

1Department of Food Science and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), 04510 Mexico City, DF, Mexico
2Department of Biochemistry, Faculty of Medicine, UNAM, 04510 Mexico City, DF, Mexico

Received 29 January 2013; Revised 11 March 2013; Accepted 11 March 2013

Academic Editor: Joaquim Cabral

Copyright © 2013 Carolina Peña-Montes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Webb, Enzyme Nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, International Union of Biochemistry and Molecular Biology, Academic Press, San Diego, Calif, USA, 6th edition, 1992.
  2. U. T. Bornscheuer and R. J. Kazlauskas, Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2nd edition, 2006.
  3. R. Verger, “‘Interfacial activation’ of lipases: facts and artifacts,” Trends in Biotechnology, vol. 15, no. 1, pp. 32–38, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. A. G. Cunha, G. Fernández-Lorente, M. L. E. Gutarra et al., “Separation and immobilization of lipase from Penicillium simplicissimum by selective adsorption on hydrophobic supports,” Applied Biochemistry and Biotechnology, vol. 156, no. 1–3, pp. 133–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. E. Lumor and C. C. Akoh, “Esterification and hydrolytic activities of Candida rugosa lipase isoform 1 (LIP1) immobilized on Celite 545, duolite A7, and sephadex G-25,” Journal of Agricultural and Food Chemistry, vol. 56, no. 21, pp. 10396–10398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Kolling, W. A. Suguino, F. C. A. Brod, and A. C. M. Arisi, “Immobilization of a recombinant esterase from Lactobacillus plantarum on polypropylene Accurel MP1000,” Applied Biochemistry and Biotechnology, vol. 163, no. 2, pp. 304–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sabbani, E. Hedenstrom, and O. Nordin, “The enantioselectivity of Candida rugosa lipase is influenced by the particle size of the immobilising support material Accurel,” Journal of Molecular Catalysis B, vol. 42, no. 1-2, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Gupta, P. Rathi, R. Singh, V. K. Goswami, and R. Gupta, “Single-step purification of lipase from Burkholderia multivorans using polypropylene matrix,” Applied Microbiology and Biotechnology, vol. 67, no. 5, pp. 648–653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. V. Almeida, R. V. Branco, B. Peixoto et al., “Immobilization of a recombinant thermostable esterase (Pf2001) from Pyrococcus furiosus on microporous polypropylene: isotherms, hyperactivation and purification,” Biochemical Engineering Journal, vol. 39, no. 3, pp. 531–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. N. Patel, “Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals,” Enzyme and Microbial Technology, vol. 31, no. 6, pp. 804–826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. N. Patel, “Synthesis of chiral pharmaceutical intermediates by biocatalysis,” Coordination Chemistry Reviews, vol. 252, no. 5–7, pp. 659–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Habulin and Z. Knez, “Optimization of (R,S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids,” Journal of Molecular Catalysis B, vol. 58, no. 1–4, pp. 24–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Schrader, M. M. W. Etschmann, D. Sell, J. M. Hilmer, and J. Rabenhorst, “Applied biocatalysis for the synthesis of natural flavour compounds–current industrial processes and future prospects,” Biotechnology Letters, vol. 26, no. 6, pp. 463–472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. I. Farbood, R. W. Blocker, J. Arvizzigno, and R. Muralidhara, “Mixtures of optical isomers of styralyl alcohol or styralyl acetate, processes for preparing same and organoleptic uses thereof,” US Patent 6,511,686, 2003.
  15. U. T. Bornscheuer, “Microbial carboxyl esterases: classification, properties and application in biocatalysis,” FEMS Microbiology Reviews, vol. 26, no. 1, pp. 73–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. L. P. Christov and B. A. Prior, “Esterases of xylan-degrading microorganisms: production, properties, and significance,” Enzyme and Microbial Technology, vol. 15, no. 6, pp. 460–475, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Gasson, Y. Kitamura, W. R. McLauchlan et al., “Metabolism of ferulic acid to vanillin: a bacterial gene of the enoyl- SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 4163–4170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Jones, L. S. Collier, E. L. Neidle, and P. A. Williams, “areABC genes determine the catabolism of aryl esters in Acinetobacter sp. strain ADP1,” Journal of Bacteriology, vol. 181, no. 15, pp. 4568–4575, 1999. View at Google Scholar · View at Scopus
  19. E. Brenna, C. Fuganti, and S. Serra, “Enantioselective perception of chiral odorants,” Tetrahedron Asymmetry, vol. 14, no. 1, pp. 1–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Hutt and J. Valentová, “The chiral switch: the development of single enantiomer drugs from racemates,” Acta Facultatis Pharmaceuticae Universitatis Comenianae, vol. 50, pp. 7–23, 2003. View at Google Scholar
  21. A. S. Bommarius and B. R. Riebel, Biocatalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1st edition, 2004.
  22. S. Erb, “Single-enantiomer drugs poised for further market growth,” Pharmaceutical Technology, vol. 30, pp. s14–s18, 2006. View at Google Scholar · View at Scopus
  23. X. M. Wu, W. Sun, J. Y. Xin, and C. G. Xia, “Lipase-catalysed kinetic resolution of secondary alcohols with improved enantioselectivity in propylene carbonate,” World Journal of Microbiology and Biotechnology, vol. 24, no. 11, pp. 2421–2424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Liaquat and R. K. O. Apenten, “Synthesis of low molecular weight flavor esters using plant seedling lipases in organic media,” Journal of Food Science, vol. 65, no. 2, pp. 295–299, 2000. View at Google Scholar · View at Scopus
  25. A. Ghanem, “Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds,” Tetrahedron, vol. 63, no. 8, pp. 1721–1754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Klibanov, “Improving enzymes by using them in organic solvents,” Nature, vol. 409, no. 6817, pp. 241–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Secundo and G. Carrea, “Lipase activity and conformation in neat organic solvents,” Journal of Molecular Catalysis B, vol. 19-20, pp. 93–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. W. Brown, J. H. Yu, H. S. Kelkar et al., “Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1418–1422, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Peña-Montes, S. Lange, D. Castro-Ochoa et al., “Differences in biocatalytic behavior between two variants of StcI esterase from Aspergillus nidulans and its potential use in biocatalysis,” Journal of Molecular Catalysis B, vol. 61, no. 3-4, pp. 225–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  31. K. Ejima, J. Liu, Y. Oshima et al., “Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: non-linear kinetic behavior of a hormone-sensitive lipase family enzyme,” Journal of Bioscience and Bioengineering, vol. 98, no. 6, pp. 445–451, 2004. View at Google Scholar · View at Scopus
  32. B. A. Barros-Filho, F. M. Nunes, M. D. C. F. de Oliveira et al., “Bioreduction of prochiral ketones by growing cells of Lasiodiplodia theobromae: discovery of a versatile biocatalyst for asymmetric synthesis,” Journal of Molecular Catalysis B, vol. 65, no. 1–4, pp. 37–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. J. J. Straathof and J. A. Jongejan, “The enantiomeric ratio: origin, determination and prediction,” Enzyme and Microbial Technology, vol. 21, no. 8, pp. 559–571, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Gitlesen, M. Bauer, and P. Adlercreutz, “Molecular cloning and characterization of a thermostable carboxylesterase from an archeon Sulfolobus shibatae DSM5389: non-linear kinetic behavior of a hormone-sensitive lipase family enzyme,” Biochimica et Biophysica Acta, vol. 1345, pp. 188–196, 1997. View at Google Scholar · View at Scopus
  35. J. M. Palomo, R. L. Segura, G. Fernández-Lorente et al., “Purification, immobilization, and stabilization of a lipase from Bacillus thermocatenulatus by interfacial adsorption on hydrophobic supports,” Biotechnology Progress, vol. 20, no. 2, pp. 630–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. D. H. Lee, C. H. Park, J. M. Yeo, and S. W. Kim, “Lipase immobilization on silica gel using a cross-linking method,” Journal of Industrial and Engineering Chemistry, vol. 12, no. 5, pp. 777–782, 2006. View at Google Scholar · View at Scopus
  37. H. Chen and Y. L. Hsieh, “Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts,” Biotechnology and Bioengineering, vol. 90, no. 4, pp. 405–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Rosu, Y. Uozaki, Y. Iwasaki, and T. Yamane, “Repeated use of immobilized lipase for monoacylglycerol production by solid-phase glycerolysis of olive oil,” Journal of the American Oil Chemists' Society, vol. 74, no. 4, pp. 445–450, 1997. View at Google Scholar · View at Scopus
  39. R. V. Branco, M. L. Estrada-Gutarra, D. M. Guimaraes-Freire, and R. Volcan-Almeida, “Immobilization and characterization of a recombinant thermostable lipase (Pf2001) from Pyrococcus furiosus on supports with different degrees of hydrophobicity,” Enzyme Research, vol. 2010, Article ID 180418, 8 pages, 2010. View at Publisher · View at Google Scholar
  40. L. A. S. Gorman and J. S. Dordick, “Organic solvents strip water off enzymes,” Biotechnology and Bioengineering, vol. 39, no. 4, pp. 392–397, 1992. View at Google Scholar · View at Scopus
  41. C. L. Suan and M. R. Sarmidi, “Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor,” Journal of Molecular Catalysis B, vol. 28, no. 2-3, pp. 111–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. T. Chin, S. L. Wheeler, and A. M. Klibanov, “Commullication to the editor on protein solubility in organic solvents,” Biotechnology and Bioengineering, vol. 44, no. 1, pp. 140–145, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. J. F. Amorim Fernandes and P. J. Halling, “Operational stability of high initial activity protease catalysts in organic solvents,” Biotechnology Progress, vol. 18, no. 6, pp. 1455–1457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. L. L. Zhao, J. H. Xu, J. Zhao, J. Pan, and Z. L. Wang, “Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010,” Process Biochemistry, vol. 43, no. 6, pp. 626–633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. T. H. Abd, R. R. N. Z. R. Abd, A. B. Salleh, and M. Basri, “The role of lid in protein-solvent interaction of the simulated solvent stable thermostable lipase from Bacillus strain 42 in water-solvent mixtures,” Biotechnology and Biotechnological Equipment, vol. 23, no. 4, pp. 1524–1530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Schütte and S. Fetzner, “EstA from Arthrobacter nitroguajacolicus Rü61a, a thermo- and solvent-tolerant carboxylesterase related to class C β-lactamases,” Current Microbiology, vol. 54, no. 3, pp. 230–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Zaks and A. M. Klibanov, “The effect of water on enzyme action in organic media,” The Journal of Biological Chemistry, vol. 263, pp. 8017–8021, 1988. View at Google Scholar
  48. P. Saveyn, E. Cocquyt, D. Sinnaeve, J. C. Martins, D. Topgaard, and P. Van der Meeren, “NMR study of the sorption behavior of benzyl alcohol derivatives into sonicated and extruded dioctadecyldimethylammonium chloride (DODAC) dispersions: the relevance of membrane fluidity,” Langmuir, vol. 24, no. 7, pp. 3082–3089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Léonard, L. Fransson, S. Lamare, K. Hult, and M. Graber, “A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol,” ChemBioChem, vol. 8, no. 6, pp. 662–667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Bustos-Jaimes, Y. García-Torres, H.C. Santillán-Uribe, and C. Montiel, “Immobilization and enantioselectivity of Bacillus pumilus lipase in ionic liquids,” Journal of Molecular Catalysis B, vol. 89, pp. 137–141, 2013. View at Google Scholar
  51. I. Hoffmann, V. D. Silva, and M. G. Da, “Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films,” Journal of the Brazilian Chemical Society, vol. 22, no. 8, pp. 1559–1567, 2011. View at Google Scholar · View at Scopus
  52. M. Graber, R. Irague, E. Rosenfeld, S. Lamare, L. Franson, and K. Hult, “Solvent as a competitive inhibitor for Candida antarctica lipase B,” Biochimica et Biophysica Acta, vol. 1774, no. 8, pp. 1052–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus